Numerical approximation of the integral fractional Laplacian

被引:0
|
作者
Andrea Bonito
Wenyu Lei
Joseph E. Pasciak
机构
[1] Texas A&M University,Department of Mathematics
[2] SISSA - Scuola Internazionale Superiore di Studi Avanzati,Mathematics Area
来源
Numerische Mathematik | 2019年 / 142卷
关键词
65N30; 35S15; 65N15; 65R20; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new nonconforming finite element algorithm to approximate the solution to the elliptic problem involving the fractional Laplacian. We first derive an integral representation of the bilinear form corresponding to the variational problem. The numerical approximation of the action of the corresponding stiffness matrix consists of three steps: (1) apply a sinc quadrature scheme to approximate the integral representation by a finite sum where each term involves the solution of an elliptic partial differential equation defined on the entire space, (2) truncate each elliptic problem to a bounded domain, (3) use the finite element method for the space approximation on each truncated domain. The consistency error analysis for the three steps is discussed together with the numerical implementation of the entire algorithm. The results of computations are given illustrating the error behavior in terms of the mesh size of the physical domain, the domain truncation parameter and the quadrature spacing parameter.
引用
收藏
页码:235 / 278
页数:43
相关论文
共 50 条
  • [41] A NUMERICAL METHOD FOR FRACTIONAL INTEGRAL WITH APPLICATIONS
    朱正佑
    李根国
    程昌钧
    AppliedMathematicsandMechanics(EnglishEdition), 2003, (04) : 373 - 384
  • [42] Numerical approximation to the fractional derivative operator
    Novati, P.
    NUMERISCHE MATHEMATIK, 2014, 127 (03) : 539 - 566
  • [43] Numerical Approximation of Fractional Burgers Equation
    Guesmia, A.
    Daili, N.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2010, 1 (02): : 77 - 90
  • [44] Numerical approximation to the fractional derivative operator
    P. Novati
    Numerische Mathematik, 2014, 127 : 539 - 566
  • [45] Collocation methods for integral fractional Laplacian and fractional PDEs based on radial basis functions
    Zhuang, Qiao
    Heryudono, Alfa
    Zeng, Fanhai
    Zhang, Zhongqiang
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 469
  • [46] Numerical approximation of 2D multi-term time and space fractional Bloch-Torrey equations involving the fractional Laplacian
    Xu, Tao
    Liu, Fawang
    Lu, Shujuan
    Anh, Vo V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 393
  • [47] An Improved Approximation of Grunwald-Letnikov Fractional Integral
    AbdAlRahman, Alaa
    Abdelaty, Amr
    Soltan, Ahmed
    Radwan, Ahmed G.
    2021 10TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2021,
  • [48] On Approximation Properties of Fractional Integral for A-Fractal Function
    Priyanka, T. M. C.
    Valarmathi, R.
    Bingi, Kishore
    Gowrisankar, A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [49] EXPONENTIAL CONVERGENCE OF hp-FEM FOR THE INTEGRAL FRACTIONAL LAPLACIAN IN POLYGONS
    Faustmann, Markus
    Marcati, Carlo
    Melenk, Jens Markus
    Schwab, Christoph
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (06) : 2601 - 2622
  • [50] EFFICIENT MONTE CARLO METHOD FOR INTEGRAL FRACTIONAL LAPLACIAN IN MULTIPLE DIMENSIONS
    Sheng, Changtao
    Su, Bihao
    Xu, Chenglong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (05) : 2035 - 2061