Numerical approximation of the integral fractional Laplacian

被引:0
|
作者
Andrea Bonito
Wenyu Lei
Joseph E. Pasciak
机构
[1] Texas A&M University,Department of Mathematics
[2] SISSA - Scuola Internazionale Superiore di Studi Avanzati,Mathematics Area
来源
Numerische Mathematik | 2019年 / 142卷
关键词
65N30; 35S15; 65N15; 65R20; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new nonconforming finite element algorithm to approximate the solution to the elliptic problem involving the fractional Laplacian. We first derive an integral representation of the bilinear form corresponding to the variational problem. The numerical approximation of the action of the corresponding stiffness matrix consists of three steps: (1) apply a sinc quadrature scheme to approximate the integral representation by a finite sum where each term involves the solution of an elliptic partial differential equation defined on the entire space, (2) truncate each elliptic problem to a bounded domain, (3) use the finite element method for the space approximation on each truncated domain. The consistency error analysis for the three steps is discussed together with the numerical implementation of the entire algorithm. The results of computations are given illustrating the error behavior in terms of the mesh size of the physical domain, the domain truncation parameter and the quadrature spacing parameter.
引用
收藏
页码:235 / 278
页数:43
相关论文
共 50 条
  • [31] Local discontinuous Galerkin method for the fractional diffusion equation with integral fractional Laplacian
    Nie, Daxin
    Deng, Weihua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 104 : 44 - 49
  • [32] Approximation of fractional Brownian sheet by Wiener integral
    Sang, Liheng
    Shen, Guangjun
    Chang, Qiangqiang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (06) : 1423 - 1441
  • [33] APPROXIMATION OF FRACTIONAL BROWNIAN MOTION BY THE VERNIERS INTEGRAL
    Mishura, Y. S.
    Banna, O. L.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2008, 79 : 96 - 104
  • [34] Numerical approximation of 2D multi-term time and space fractional Bloch–Torrey equations involving the fractional Laplacian
    Xu, Tao
    Liu, Fawang
    Lü, Shujuan
    Anh, Vo V.
    Liu, Fawang (f.liu@qut.edu.au), 1600, Elsevier B.V. (393):
  • [35] Fast Implementation of FEM for Integral Fractional Laplacian on Rectangular Meshes
    Sheng, Changtao
    Wang, Li-Lian
    Chen, Hongbin
    Li, Huiyuan
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 36 (03) : 673 - 710
  • [36] Two-Level Error Estimation for the Integral Fractional Laplacian
    Faustmann, Markus
    Stephan, Ernst P. P.
    Woergoetter, David
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (03) : 603 - 621
  • [37] Approximating and Preconditioning the Stiffness Matrix in the GoFD Approximation of the Fractional Laplacian
    Huang, Weizhang
    Shen, Jinye
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2025, 37 (01) : 1 - 29
  • [38] A PRIORI ERROR ESTIMATES FOR THE OPTIMAL CONTROL OF THE INTEGRAL FRACTIONAL LAPLACIAN
    D'elia, Marta
    Glusa, Christian
    Otarola, Enrique
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (04) : 2775 - 2798
  • [39] A numerical method for fractional integral with applications
    Zhu, ZY
    Li, GG
    Cheng, CJ
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2003, 24 (04) : 373 - 384
  • [40] A numerical method for fractional integral with applications
    Zhu Zheng-you
    Li Gen-guo
    Cheng Chang-jun
    Applied Mathematics and Mechanics, 2003, 24 (4) : 373 - 384