Cosmological singularities and analytical solutions in varying vacuum cosmologies

被引:0
|
作者
Spyros Basilakos
Andronikos Paliathanasis
John D. Barrow
G. Papagiannopoulos
机构
[1] Academy of Athens,Instituto de Ciencias Físicas y Matemáticas
[2] Research Center for Astronomy and Applied Mathematics,Department of Mathematics and Natural Sciences,Core Curriculum Program
[3] Universidad Austral de Chile,Institute of Systems Science
[4] Prince Mohammad Bin Fahd University,DAMTP, Centre for Mathematical Sciences
[5] Durban University of Technology,Faculty of Physics, Department of Astronomy
[6] University of Cambridge,Astrophysics
[7] University of Athens,Mechanics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the dynamical features of a large family of running vacuum cosmologies for which Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} evolves as a polynomial in the Hubble parameter. Specifically, using the critical point analysis we study the existence and the stability of singular solutions which describe de-Sitter, radiation and matter dominated eras. We find several classes of Λ(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda (H)$$\end{document} cosmologies for which new analytical solutions are given in terms of Laurent expansions. Finally, we show that the Milne universe and the Rh=ct\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{h}=ct$$\end{document} model can be seen as perturbations around a specific Λ(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda (H)$$\end{document} model, but this model is unstable.
引用
收藏
相关论文
共 50 条
  • [21] SINGULARITIES OF SOLUTIONS TO COMPRESSIBLE EULER EQUATIONS WITH VACUUM
    Lei, Zhen
    Du, Yi
    Zhang, Qingtian
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (01) : 55 - 64
  • [22] Matter-antimatter asymmetry and other cosmological puzzles via running vacuum cosmologies
    Lima, J. A. S.
    Singleton, D.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (11):
  • [23] Future singularities of isotropic cosmologies
    Cotsakis, S
    Klaoudatou, I
    JOURNAL OF GEOMETRY AND PHYSICS, 2005, 55 (03) : 306 - 315
  • [24] Varying-α theories and solutions to the cosmological problems
    Barrow, JD
    Magucijo, J
    PHYSICS LETTERS B, 1998, 443 (1-4) : 104 - 110
  • [25] Solutions of cosmological models with varying speed of light
    Camara, C. S.
    Nascimento, R. B.
    Carvalho, J. C.
    De Garcia Maia, M. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2007, 16 (2-3): : 433 - 437
  • [26] Conditional symmetries and the quantization of Bianchi Type I vacuum cosmologies with and without cosmological constant
    Christodoulakis, T
    Gakis, T
    Papadopoulos, GO
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (06) : 1013 - 1025
  • [27] Singularities in cosmologies with interacting fluids
    Cotsakis, Spiros
    Kittou, Georgia
    PHYSICS LETTERS B, 2012, 712 (1-2) : 16 - 21
  • [28] SINGULARITIES IN SPATIALLY HOMOGENEOUS COSMOLOGIES
    ELLIS, GFR
    GENERAL RELATIVITY AND GRAVITATION, 1979, 10 (12) : 1013 - 1019
  • [29] Cosmological singularities
    Cotsakis, S
    COSMOLOGICAL CROSSROADS: AN ADVANCED COURSE IN MATHEMATICAL, PHYSICAL AND STRING COSMOLOGY, 2002, 592 : 59 - 94
  • [30] SUPERFLUID VACUUM STATE, TIME-VARYING COSMOLOGICAL CONSTANT, AND NONSINGULAR COSMOLOGICAL MODELS
    SINHA, KP
    SIVARAM, C
    SUDARSHAN, ECG
    FOUNDATIONS OF PHYSICS, 1976, 6 (06) : 717 - 726