Cosmological singularities and analytical solutions in varying vacuum cosmologies

被引:0
|
作者
Spyros Basilakos
Andronikos Paliathanasis
John D. Barrow
G. Papagiannopoulos
机构
[1] Academy of Athens,Instituto de Ciencias Físicas y Matemáticas
[2] Research Center for Astronomy and Applied Mathematics,Department of Mathematics and Natural Sciences,Core Curriculum Program
[3] Universidad Austral de Chile,Institute of Systems Science
[4] Prince Mohammad Bin Fahd University,DAMTP, Centre for Mathematical Sciences
[5] Durban University of Technology,Faculty of Physics, Department of Astronomy
[6] University of Cambridge,Astrophysics
[7] University of Athens,Mechanics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the dynamical features of a large family of running vacuum cosmologies for which Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} evolves as a polynomial in the Hubble parameter. Specifically, using the critical point analysis we study the existence and the stability of singular solutions which describe de-Sitter, radiation and matter dominated eras. We find several classes of Λ(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda (H)$$\end{document} cosmologies for which new analytical solutions are given in terms of Laurent expansions. Finally, we show that the Milne universe and the Rh=ct\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{h}=ct$$\end{document} model can be seen as perturbations around a specific Λ(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda (H)$$\end{document} model, but this model is unstable.
引用
收藏
相关论文
共 50 条
  • [1] Cosmological singularities and analytical solutions in varying vacuum cosmologies
    Basilakos, Spyros
    Paliathanasis, Andronikos
    Barrow, John D.
    Papagiannopoulos, G.
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (08):
  • [2] Varying Constant Cosmologies and Cosmic Singularities
    Dabrowski, Mariusz P.
    Marosek, Konrad
    MULTIVERSE AND FUNDAMENTAL COSMOLOGY: MULTICOSMOFUN '12, 2013, 1514
  • [3] REPULSIVE AND ATTRACTIVE TIMELIKE SINGULARITIES IN VACUUM COSMOLOGIES
    MILLER, BD
    JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (07) : 1356 - 1361
  • [4] Nonsingular vacuum cosmologies with a variable cosmological term
    Bronnikov, KA
    Dobosz, A
    Dymnikova, IG
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (16) : 3797 - 3814
  • [5] Regularizing cosmological singularities by varying physical constants
    Dabrowski, Mariusz P.
    Marosek, Konrad
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (02):
  • [6] SINGULARITIES OF COSMOLOGICAL SOLUTIONS OF GRAVITATIONAL EQUATIONS
    KHALATNIKOV, I
    LIFSHIFT.EM
    SUDAKOV, VV
    PHYSICAL REVIEW LETTERS, 1961, 6 (06) : 311 - &
  • [7] ON THE SINGULARITIES OF COSMOLOGICAL SOLUTIONS OF THE GRAVITATIONAL EQUATIONS
    LIFSHITZ, EM
    KHALATNIKOV, IM
    SOVIET PHYSICS JETP-USSR, 1961, 12 (03): : 558 - 563
  • [8] Spherical collapse model in time varying vacuum cosmologies
    Basilakos, Spyros
    Plionis, Manolis
    Sola, Joan
    PHYSICAL REVIEW D, 2010, 82 (08)
  • [9] Analytical fit to the luminosity distance for flat cosmologies with a cosmological constant
    Pen, UL
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1999, 120 (01): : 49 - 50
  • [10] An Analytical Approximation of the Luminosity Distance in Flat Cosmologies with a Cosmological Constant
    Adachi, Masaru
    Kasai, Masumi
    PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (01): : 145 - 152