Duality for extended infinite monotropic optimization problems

被引:0
|
作者
Dinh The Luc
Michel Volle
机构
[1] Ton Duc Thang University,Parametric MultiObjective Optimization Research Group
[2] Ton Duc Thang University,Faculty of Mathematics and Statistics
[3] Avignon University,LMA EA 2151
来源
Mathematical Programming | 2021年 / 189卷
关键词
Monotropic optimization; Strong duality; Zero duality gap; Minimum cost flow; Infinite network; 90C30; 90C46; 90N15;
D O I
暂无
中图分类号
学科分类号
摘要
We establish necessary and sufficient conditions for strong duality of extended monotropic optimization problems with possibly infinite sum of separable functions. The results are applied to a minimization problem of the infinite sum of proper convex functions. We consider a truncation method for duality and obtain the zero duality gap by using only dual variable of finite support. An application to minimum cost flow problems in infinite networks is also discussed.
引用
收藏
页码:409 / 432
页数:23
相关论文
共 50 条
  • [41] Duality for nonsmooth semi-infinite programming problems
    S. K. Mishra
    M. Jaiswal
    Le Thi Hoai An
    Optimization Letters, 2012, 6 : 261 - 271
  • [42] RELAXED LAGRANGIAN DUALITY IN CONVEX INFINITE OPTIMIZATION: REVERSE STRONG DUALITY AND OPTIMALITY
    Dinh N.
    Goberna M.A.
    López M.A.
    Volle M.
    Journal of Applied and Numerical Optimization, 2022, 4 (01): : 3 - 18
  • [43] A Unifying Approach to Robust Convex Infinite Optimization Duality
    Nguyen Dinh
    Miguel Angel Goberna
    Marco Antonio López
    Michel Volle
    Journal of Optimization Theory and Applications, 2017, 174 : 650 - 685
  • [44] Correction to: Duality for convex infinite optimization on linear spaces
    M. A. Goberna
    M. Volle
    Optimization Letters, 2022, 16 (8) : 2511 - 2511
  • [45] A Unifying Approach to Robust Convex Infinite Optimization Duality
    Nguyen Dinh
    Angel Goberna, Miguel
    Antonio Lopez, Marco
    Volle, Michel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (03) : 650 - 685
  • [46] Duality theorems for nondifferentiable semi-infinite interval-valued optimization problems with vanishing constraints
    Haijun Wang
    Huihui Wang
    Journal of Inequalities and Applications, 2021
  • [47] Duality theorems for nondifferentiable semi-infinite interval-valued optimization problems with vanishing constraints
    Wang, Haijun
    Wang, Huihui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [48] Optimality conditions and duality for multiobjective semi-infinite optimization problems with switching constraints on Hadamard manifolds
    Upadhyay, Balendu Bhooshan
    Ghosh, Arnav
    POSITIVITY, 2024, 28 (04)
  • [49] Duality Theorems in Fuzzy Optimization Problems
    Nehi, H. Mishmast
    Drayab, A.
    FUZZY INFORMATION AND ENGINEERING, 2013, 5 (01) : 87 - 98
  • [50] Duality for optimization problems in Banach algebras
    M. Soleimani-damaneh
    Journal of Global Optimization, 2012, 54 : 375 - 388