Duality for extended infinite monotropic optimization problems

被引:0
|
作者
Dinh The Luc
Michel Volle
机构
[1] Ton Duc Thang University,Parametric MultiObjective Optimization Research Group
[2] Ton Duc Thang University,Faculty of Mathematics and Statistics
[3] Avignon University,LMA EA 2151
来源
Mathematical Programming | 2021年 / 189卷
关键词
Monotropic optimization; Strong duality; Zero duality gap; Minimum cost flow; Infinite network; 90C30; 90C46; 90N15;
D O I
暂无
中图分类号
学科分类号
摘要
We establish necessary and sufficient conditions for strong duality of extended monotropic optimization problems with possibly infinite sum of separable functions. The results are applied to a minimization problem of the infinite sum of proper convex functions. We consider a truncation method for duality and obtain the zero duality gap by using only dual variable of finite support. An application to minimum cost flow problems in infinite networks is also discussed.
引用
收藏
页码:409 / 432
页数:23
相关论文
共 50 条
  • [21] An extended conjugate duality for generalized semi-infinite programming problems via a convex decomposition
    Aboussoror, A.
    Adly, S.
    Salim, S.
    OPTIMIZATION, 2020, 69 (7-8) : 1635 - 1654
  • [22] Extended Farkas lemma and strong duality for composite optimization problems with DC functions
    Fang, Donghui
    Gong, Xin
    OPTIMIZATION, 2017, 66 (02) : 179 - 196
  • [23] On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems
    Lee, Jae Hyoung
    Lee, Gue Myung
    ANNALS OF OPERATIONS RESEARCH, 2018, 269 (1-2) : 419 - 438
  • [24] MIXED TYPE DUALITY FOR A CLASS OF MULTIPLE OBJECTIVE OPTIMIZATION PROBLEMS WITH AN INFINITE NUMBER OF CONSTRAINTS
    Rao, Liguo
    Bui Van Dinh
    Kim, Do Sang
    Yoon, Min
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (01) : 49 - 61
  • [25] On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems
    Jae Hyoung Lee
    Gue Myung Lee
    Annals of Operations Research, 2018, 269 : 419 - 438
  • [26] Algebraic duality theorems for infinite LP problems
    Pinter, Miklos
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) : 688 - 693
  • [27] Hybrid protocol for distributed non-differentiable extended monotropic optimization
    Jiang, Xia
    Zeng, Xianlin
    Sun, Jian
    Chen, Jie
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 654 - 659
  • [28] New glimpses on convex infinite optimization duality
    M. A. Goberna
    M. A. López
    M. Volle
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015, 109 : 431 - 450
  • [29] New glimpses on convex infinite optimization duality
    Goberna, M. A.
    Lopez, M. A.
    Volle, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 431 - 450
  • [30] Duality for convex infinite optimization on linear spaces
    M. A. Goberna
    M. Volle
    Optimization Letters, 2022, 16 : 2501 - 2510