Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning

被引:0
|
作者
Yue Deng
Feng Bao
Qionghai Dai
Lani F. Wu
Steven J. Altschuler
机构
[1] University of California,Department of Pharmaceutical Chemistry
[2] San Francisco,Department of Automation, Tsinghua National Laboratory for Information Science and Technology
[3] Tsinghua University,undefined
来源
Nature Methods | 2019年 / 16卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances in large-scale single-cell RNA-seq enable fine-grained characterization of phenotypically distinct cellular states in heterogeneous tissues. We present scScope, a scalable deep-learning-based approach that can accurately and rapidly identify cell-type composition from millions of noisy single-cell gene-expression profiles.
引用
收藏
页码:311 / 314
页数:3
相关论文
共 50 条
  • [31] Dictionary learning for integrative, multimodal and scalable single-cell analysis
    Yuhan Hao
    Tim Stuart
    Madeline H. Kowalski
    Saket Choudhary
    Paul Hoffman
    Austin Hartman
    Avi Srivastava
    Gesmira Molla
    Shaista Madad
    Carlos Fernandez-Granda
    Rahul Satija
    Nature Biotechnology, 2024, 42 : 293 - 304
  • [32] Dictionary learning for integrative, multimodal and scalable single-cell analysis
    Hao, Yuhan
    Stuart, Tim
    Kowalski, Madeline H. H.
    Choudhary, Saket
    Hoffman, Paul
    Hartman, Austin
    Srivastava, Avi
    Molla, Gesmira
    Madad, Shaista
    Fernandez-Granda, Carlos
    Satija, Rahul
    NATURE BIOTECHNOLOGY, 2024, 42 (02) : 293 - 304
  • [33] Single-cell Transcriptomics Reveals Cell-type Specific Transcriptional Responses In Murine Embryonic Hearts Exposed To Maternal Hyperglycemia
    Manivannan, Sathiyanarayanan
    Mansfield, Corrin R.
    Zhang, Xinmin
    Kodigepalli, Madhav Karthik
    Majumdar, Uddalak
    Garg, Vidu
    Basu, Madhumita
    CIRCULATION RESEARCH, 2022, 131
  • [34] Cell type-specific transcriptomics of esophageal adenocarcinoma as a scalable alternative for single cell transcriptomics
    Kraemer, Max
    Plum, Patrick S.
    Camacho, Oscar Velazquez
    Folz-Donahue, Kat
    Thelen, Martin
    Garcia-Marquez, Isabel
    Woelwer, Christina
    Buesker, Soeren
    Wittig, Jana
    Franitza, Marek
    Altmueller, Janine
    Loeser, Heike
    Schloesser, Hans
    Buettner, Reinhard
    Schroeder, Wolfgang
    Bruns, Christiane J.
    Alakus, Hakan
    Quaas, Alexander
    Chon, Seung-Hun
    Hillmer, Axel M.
    MOLECULAR ONCOLOGY, 2020, 14 (06) : 1170 - 1184
  • [35] A comprehensive comparison on cell-type composition inference for spatial transcriptomics data
    Chen, Jiawen
    Liu, Weifang
    Luo, Tianyou
    Yu, Zhentao
    Jiang, Minzhi
    Wen, Jia
    Gupta, Gaorav P.
    Giusti, Paola
    Zhu, Hongtu
    Yang, Yuchen
    Li, Yun
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (04)
  • [36] Inferring disease progression stages in single-cell transcriptomics using a weakly supervised deep learning approach
    Wehbe, Fabien
    Adams, Levi
    Babadoudou, Jordan
    Yuen, Samantha
    Kim, Yoon-Seong
    Tanaka, Yoshiaki
    GENOME RESEARCH, 2025, 35 (01) : 135 - 146
  • [37] Temporal modelling using single-cell transcriptomics
    Jun Ding
    Nadav Sharon
    Ziv Bar-Joseph
    Nature Reviews Genetics, 2022, 23 (6) : 355 - 368
  • [38] Unravelling fibrosis using single-cell transcriptomics
    Dobie, Ross
    Henderson, Neil C.
    CURRENT OPINION IN PHARMACOLOGY, 2019, 49 : 71 - 75
  • [39] Current Challenges in Cell-Type Discovery Through Single-Cell Data
    Roditi, Laura De Vargas
    Macnair, Will
    Claassen, Manfred
    WORKSHOP ON MULTISCALE AND HYBRID MODELLING IN CELL AND CELL POPULATION BIOLOGY, 2015, 5
  • [40] Temporal modelling using single-cell transcriptomics
    Ding, Jun
    Sharon, Nadav
    Bar-Joseph, Ziv
    NATURE REVIEWS GENETICS, 2022, 23 (06) : 355 - 368