Dictionary learning for integrative, multimodal and scalable single-cell analysis

被引:0
|
作者
Yuhan Hao
Tim Stuart
Madeline H. Kowalski
Saket Choudhary
Paul Hoffman
Austin Hartman
Avi Srivastava
Gesmira Molla
Shaista Madad
Carlos Fernandez-Granda
Rahul Satija
机构
[1] New York University,Center for Genomics and Systems Biology
[2] New York Genome Center,Institute for System Genetics
[3] NYU Langone Medical Center,Center for Data Science
[4] New York University,Courant Institute of Mathematical Sciences
[5] New York University,undefined
来源
Nature Biotechnology | 2024年 / 42卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Mapping single-cell sequencing profiles to comprehensive reference datasets provides a powerful alternative to unsupervised analysis. However, most reference datasets are constructed from single-cell RNA-sequencing data and cannot be used to annotate datasets that do not measure gene expression. Here we introduce ‘bridge integration’, a method to integrate single-cell datasets across modalities using a multiomic dataset as a molecular bridge. Each cell in the multiomic dataset constitutes an element in a ‘dictionary’, which is used to reconstruct unimodal datasets and transform them into a shared space. Our procedure accurately integrates transcriptomic data with independent single-cell measurements of chromatin accessibility, histone modifications, DNA methylation and protein levels. Moreover, we demonstrate how dictionary learning can be combined with sketching techniques to improve computational scalability and harmonize 8.6 million human immune cell profiles from sequencing and mass cytometry experiments. Our approach, implemented in version 5 of our Seurat toolkit (http://www.satijalab.org/seurat), broadens the utility of single-cell reference datasets and facilitates comparisons across diverse molecular modalities.
引用
收藏
页码:293 / 304
页数:11
相关论文
共 50 条
  • [1] Dictionary learning for integrative, multimodal and scalable single-cell analysis
    Hao, Yuhan
    Stuart, Tim
    Kowalski, Madeline H. H.
    Choudhary, Saket
    Hoffman, Paul
    Hartman, Austin
    Srivastava, Avi
    Molla, Gesmira
    Madad, Shaista
    Fernandez-Granda, Carlos
    Satija, Rahul
    NATURE BIOTECHNOLOGY, 2024, 42 (02) : 293 - 304
  • [2] Cobolt: integrative analysis of multimodal single-cell sequencing data
    Gong, Boying
    Zhou, Yun
    Purdom, Elizabeth
    GENOME BIOLOGY, 2021, 22 (01)
  • [3] Cobolt: integrative analysis of multimodal single-cell sequencing data
    Boying Gong
    Yun Zhou
    Elizabeth Purdom
    Genome Biology, 22
  • [4] scJVAE: A novel method for integrative analysis of multimodal single-cell data
    Wani, Shahid Ahmad
    Khan, Sumeer Ahmad
    Quadri, S. M. K.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [5] Editorial: Multimodal and Integrative Analysis of Single-Cell or Bulk Sequencing Data
    Chen, Geng
    FRONTIERS IN GENETICS, 2021, 12
  • [6] Integrative single-cell analysis
    Stuart, Tim
    Satija, Rahul
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 257 - 272
  • [7] Integrative single-cell analysis
    Tim Stuart
    Rahul Satija
    Nature Reviews Genetics, 2019, 20 : 257 - 272
  • [8] ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis
    Granja, Jeffrey M.
    Corces, M. Ryan
    Pierce, Sarah E.
    Bagdatli, S. Tansu
    Choudhry, Hani
    Chang, Howard Y.
    Greenleaf, William J.
    NATURE GENETICS, 2021, 53 (03) : 403 - +
  • [9] ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis
    Jeffrey M. Granja
    M. Ryan Corces
    Sarah E. Pierce
    S. Tansu Bagdatli
    Hani Choudhry
    Howard Y. Chang
    William J. Greenleaf
    Nature Genetics, 2021, 53 : 403 - 411
  • [10] Protocol to perform integrative analysis of highdimensional single-cell multimodal data using an interpretable deep learning technique
    Zhou, Manqi
    Zhang, Hao
    Bai, Zilong
    Mann-Krzisnik, Dylan
    Wang, Fei
    Li, Yue
    STAR PROTOCOLS, 2024, 5 (02):