Dictionary learning for integrative, multimodal and scalable single-cell analysis

被引:0
|
作者
Yuhan Hao
Tim Stuart
Madeline H. Kowalski
Saket Choudhary
Paul Hoffman
Austin Hartman
Avi Srivastava
Gesmira Molla
Shaista Madad
Carlos Fernandez-Granda
Rahul Satija
机构
[1] New York University,Center for Genomics and Systems Biology
[2] New York Genome Center,Institute for System Genetics
[3] NYU Langone Medical Center,Center for Data Science
[4] New York University,Courant Institute of Mathematical Sciences
[5] New York University,undefined
来源
Nature Biotechnology | 2024年 / 42卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Mapping single-cell sequencing profiles to comprehensive reference datasets provides a powerful alternative to unsupervised analysis. However, most reference datasets are constructed from single-cell RNA-sequencing data and cannot be used to annotate datasets that do not measure gene expression. Here we introduce ‘bridge integration’, a method to integrate single-cell datasets across modalities using a multiomic dataset as a molecular bridge. Each cell in the multiomic dataset constitutes an element in a ‘dictionary’, which is used to reconstruct unimodal datasets and transform them into a shared space. Our procedure accurately integrates transcriptomic data with independent single-cell measurements of chromatin accessibility, histone modifications, DNA methylation and protein levels. Moreover, we demonstrate how dictionary learning can be combined with sketching techniques to improve computational scalability and harmonize 8.6 million human immune cell profiles from sequencing and mass cytometry experiments. Our approach, implemented in version 5 of our Seurat toolkit (http://www.satijalab.org/seurat), broadens the utility of single-cell reference datasets and facilitates comparisons across diverse molecular modalities.
引用
收藏
页码:293 / 304
页数:11
相关论文
共 50 条
  • [21] ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis (vol 53, pg 403, 2021)
    Granja, Jeffrey M.
    Corces, M. Ryan
    Pierce, Sarah E.
    Bagdatli, S. Tansu
    Choudhry, Hani
    Chang, Howard Y.
    Greenleaf, William J.
    NATURE GENETICS, 2021, 53 (06) : 935 - 935
  • [22] Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning
    Deng, Yue
    Bao, Feng
    Dai, Qionghai
    Wu, Lani F.
    Altschuler, Steven J.
    NATURE METHODS, 2019, 16 (04) : 311 - +
  • [23] Integrated analysis of multimodal single-cell data with structural similarity
    Cao, Yingxin
    Fu, Laiyi
    Wu, Jie
    Peng, Qinke
    Nie, Qing
    Zhang, Jing
    Xie, Xiaohui
    NUCLEIC ACIDS RESEARCH, 2022, 50 (21) : E121
  • [24] Integrative analysis of spatial transcriptome with single-cell transcriptome and single-cell epigenome in mouse lungs after immunization
    Xu, Zhongli
    Wang, Xinjun
    Fan, Li
    Wang, Fujing
    Lin, Becky
    Wang, Jiebiao
    Trevejo-Nunez, Giraldina
    Chen, Wei
    Chen, Kong
    ISCIENCE, 2022, 25 (09)
  • [25] Cellenium-a scalable and interactive visual analytics app for exploring multimodal single-cell data
    Jahn, Carsten
    Ibrahim, Mahmoud
    Busch, Jannis
    Lin, Qiong
    Manchanda, Himanshu
    Mohr, Hagen
    Plischke, Dan
    Roider, Helge G.
    Steffen, Andreas
    BIOINFORMATICS, 2023, 39 (06)
  • [26] Bayesian deep learning for single-cell analysis
    Gregory P. Way
    Casey S. Greene
    Nature Methods, 2018, 15 : 1009 - 1010
  • [27] Integrative single-cell chromatin and transcriptome analysis of human plasma cell differentiation
    Alaterre, Elina
    Ovejero, Sara
    Bret, Caroline
    Dutrieux, Laure
    Sika, Dassou
    Perez, Raul Fernandez
    Espeli, Marion
    Fest, Thierry
    Cogne, Michel
    Martin-Subero, Jose Ignacio
    Milpied, Pierre
    Cavalli, Giacomo
    Moreaux, Jerome
    BLOOD, 2024, 144 (05) : 496 - 509
  • [28] Bayesian deep learning for single-cell analysis
    Way, Gregory P.
    Greene, Casey S.
    NATURE METHODS, 2018, 15 (12) : 1009 - 1010
  • [29] Integrative Single-Cell RNA-Seq and Single-Cell ATAC-Seq Analysis of Human Plasma Cell Differentiation
    Alaterre, Elina
    Ovejero, Sara
    Espeli, Marion
    Fest, Thierry
    Cogne, Michel
    Milpied, Pierre
    Cavalli, Giacomo
    Moreaux, Jerome
    BLOOD, 2023, 142
  • [30] Manifold learning analysis suggests strategies to align single-cell multimodal data of neuronal electrophysiology and transcriptomics
    Huang, Jiawei
    Sheng, Jie
    Wang, Daifeng
    COMMUNICATIONS BIOLOGY, 2021, 4 (01)