Generalized quiver varieties and triangulated categories

被引:0
|
作者
Sarah Scherotzke
机构
[1] University of Münster,Mathematisches Institut
来源
Mathematische Zeitschrift | 2019年 / 292卷
关键词
Nakajima quiver varieties; Cluster algebra; Monoidal categorification; 13F60; 16G70; 18E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce generalized quiver varieties which include as special cases classical and cyclic quiver varieties. The geometry of generalized quiver varieties is governed by a finitely generated algebra P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {P}}}$$\end{document}: the algebra P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {P}}}$$\end{document} is self-injective if the quiver Q is of Dynkin type, and coincides with the preprojective algebra in the case of classical quiver varieties. We show that in the Dynkin case the strata of generalized quiver varieties are in bijection with the isomorphism classes of objects in projP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {proj}}\,{{\mathcal {P}}}$$\end{document}, and that their degeneration order coincides with the Jensen–Su–Zimmermann’s degeneration order on the triangulated category projP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {proj}}\,{{\mathcal {P}}}$$\end{document}. Furthermore, we prove that classical quiver varieties of type An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document} can be realized as moduli spaces of representations of an algebra S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}.
引用
收藏
页码:1453 / 1478
页数:25
相关论文
共 50 条
  • [31] Quotient triangulated categories
    Xiao-Wu Chen
    Pu Zhang
    manuscripta mathematica, 2007, 123 : 167 - 183
  • [32] Triangulated Categories of Periodic Complexes and Orbit Categories
    Liu, Jian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) : 765 - 792
  • [33] Triangulated categories of periodic complexes and orbit categories
    Jian Liu
    Czechoslovak Mathematical Journal, 2023, 73 : 765 - 792
  • [34] A note on equivariantization of additive categories and triangulated categories
    Sun, Chao
    JOURNAL OF ALGEBRA, 2019, 534 : 483 - 530
  • [35] Translation quiver varieties
    Mozgovoy, Sergey
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (01)
  • [36] Smoothing of quiver varieties
    Klaus Altmann
    Duco van Straten
    manuscripta mathematica, 2009, 129 : 211 - 230
  • [37] QUIVER GRASSMANNIANS, QUIVER VARIETIES AND THE PREPROJECTIVE ALGEBRA
    Savage, Alistair
    Tingley, Peter
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 251 (02) : 393 - 429
  • [38] Quiver varieties of type A
    Maffei, A
    COMMENTARII MATHEMATICI HELVETICI, 2005, 80 (01) : 1 - 27
  • [39] Quiver Varieties and Yangians
    Michela Varagnolo
    Letters in Mathematical Physics, 2000, 53 : 273 - 283
  • [40] Gluing approximable triangulated categories
    Burke, Jesse
    Neeman, Amnon
    Pauwels, Bregje
    FORUM OF MATHEMATICS SIGMA, 2023, 11