Generalized quiver varieties and triangulated categories

被引:0
|
作者
Sarah Scherotzke
机构
[1] University of Münster,Mathematisches Institut
来源
Mathematische Zeitschrift | 2019年 / 292卷
关键词
Nakajima quiver varieties; Cluster algebra; Monoidal categorification; 13F60; 16G70; 18E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce generalized quiver varieties which include as special cases classical and cyclic quiver varieties. The geometry of generalized quiver varieties is governed by a finitely generated algebra P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {P}}}$$\end{document}: the algebra P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {P}}}$$\end{document} is self-injective if the quiver Q is of Dynkin type, and coincides with the preprojective algebra in the case of classical quiver varieties. We show that in the Dynkin case the strata of generalized quiver varieties are in bijection with the isomorphism classes of objects in projP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {proj}}\,{{\mathcal {P}}}$$\end{document}, and that their degeneration order coincides with the Jensen–Su–Zimmermann’s degeneration order on the triangulated category projP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {proj}}\,{{\mathcal {P}}}$$\end{document}. Furthermore, we prove that classical quiver varieties of type An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document} can be realized as moduli spaces of representations of an algebra S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}.
引用
收藏
页码:1453 / 1478
页数:25
相关论文
共 50 条
  • [21] ENHANCED TRIANGULATED CATEGORIES
    BONDAL, AI
    KAPRANOV, MM
    MATHEMATICS OF THE USSR-SBORNIK, 1991, 70 (01): : 93 - 107
  • [23] Completions of Triangulated Categories
    Krause, Henning
    TRIANGULATED CATEGORIES IN REPRESENTATION THEORY AND BEYOND, ABEL SYMPOSIUM 2022, 2024, 17 : 169 - 193
  • [24] A NULLSTELLENSATZ FOR TRIANGULATED CATEGORIES
    Bondarko, M. V.
    Sosnilo, V. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (06) : 889 - 898
  • [25] Discrete triangulated categories
    Broomhead, Nathan
    Pauksztello, David
    Ploog, David
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (01) : 174 - 188
  • [26] Descent in triangulated categories
    Balmer, Paul
    MATHEMATISCHE ANNALEN, 2012, 353 (01) : 109 - 125
  • [27] On A∞-enhancements for triangulated categories
    Kajiura, Hiroshige
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (08) : 1476 - 1503
  • [28] Derived and Triangulated Categories
    Lipman, Joseph
    Hashimoto, Mitsuyasu
    FOUNDATIONS OF GROTHENDIECK DUALITY FOR DIAGRAMS OF SCHEMES, 2009, 1960 : 11 - 42
  • [29] Separability and triangulated categories
    Balmer, Paul
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4352 - 4372
  • [30] Determinants in triangulated categories
    Vaknin, A
    K-THEORY, 2001, 24 (01): : 57 - 68