2-Rainbow domination stability of graphs

被引:0
|
作者
Zepeng Li
Zehui Shao
Shou-jun Xu
机构
[1] Lanzhou University,School of Information Science and Engineering
[2] Guangzhou University,Institute of Computing Science and Technology
[3] Lanzhou University,School of Mathematics and Statistics
来源
关键词
2-Rainbow domination; 2-Rainbow domination number; 2-Rainbow domination stability;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G, let f:V(G)→P({1,2}).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(G)\rightarrow \mathcal {P}(\{1,2\}).$$\end{document} If for each vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document} such that f(v)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=\emptyset $$\end{document} we have ⋃u∈N(v)f(u)={1,2},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigcup \nolimits _{u\in N(v)}f(u)=\{1,2\},$$\end{document} then f is called a 2-rainbow dominating function (2RDF) of G. The weight w(f) of a function f is defined as w(f)=∑v∈V(G)f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(f)=\sum _{v\in V(G)}\left| f(v)\right| $$\end{document}. The minimum weight of a 2RDF of G is called the 2-rainbow domination number of G, denoted by γr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{r2}(G)$$\end{document}. The 2-rainbow domination stability, stγr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)$$\end{document}, of G is the minimum number of vertices in G whose removal changes the 2-rainbow domination number. In this paper, we first determine the exact values on 2-rainbow domination stability of some special classes of graphs, such as paths, cycles, complete graphs and complete bipartite graphs. Then we obtain several bounds on stγr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)$$\end{document}. In particular, we obtain stγr2(G)≤δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)\le \delta (G)+1$$\end{document} and stγr2(G)≤|V(G)|-Δ(G)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)\le |V(G)|-\varDelta (G)-1$$\end{document} if γr2(G)≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{r2}(G)\ge 3$$\end{document}. Moreover, we prove that there exists no graph G with stγr2(G)=|V(G)|-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)=|V(G)|-2$$\end{document} when n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document} and characterize the graphs G with stγr2(G)=|V(G)|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)=|V(G)|-1$$\end{document} or stγr2(G)=|V(G)|-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)=|V(G)|-3$$\end{document}.
引用
收藏
页码:836 / 845
页数:9
相关论文
共 50 条
  • [41] Changing and Unchanging 2-Rainbow Independent Domination
    Shi, Xiaolong
    Wu, Pu
    Shao, Zehui
    Samodivkin, Vladimir
    Sheikholeslami, Seyed Mahmoud
    Soroudi, M.
    Wang, Shaohui
    IEEE ACCESS, 2019, 7 : 72604 - 72612
  • [42] TOTAL 2-RAINBOW DOMINATION NUMBERS OF TREES
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Chellali, M.
    Nazari-Moghaddam, S.
    Sheikholeslami, S. M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 345 - 364
  • [43] Trees with Equal Total Domination and 2-Rainbow Domination Numbers
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    Wang, Bo
    Wu, Pu
    Zhang, Xiaosong
    FILOMAT, 2018, 32 (02) : 599 - 607
  • [44] Changing and unchanging 2-rainbow independent domination
    Wu, Pu
    Shao, Zehui
    Samodivkin, Vladimir
    Sheikholeslami, S.M.
    Soroudi, M.
    Wang, Shaohui
    arXiv, 2018,
  • [45] Maximal 2-rainbow domination number of a graph
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Sheikholeslami, S. M.
    Kuziak, D.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (02) : 157 - 164
  • [46] ON 2-RAINBOW DOMINATION NUMBER OF FUNCTIGRAPH AND ITS COMPLEMENT
    Shaminezhad, Athena
    Vatandoost, Ebrahim
    OPUSCULA MATHEMATICA, 2020, 40 (05) : 617 - 627
  • [47] Bounds on weak roman and 2-rainbow domination numbers
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    DISCRETE APPLIED MATHEMATICS, 2014, 178 : 27 - 32
  • [48] A lower bound for 2-rainbow domination number of generalized Petersen graphs P(n,3)
    Tong Chunling
    Lin Xiaohui
    Yang Yuansheng
    Zhang Baosheng
    Zheng Xianchen
    ARS COMBINATORIA, 2011, 102 : 483 - 492
  • [49] \Graphs with Large Total 2-Rainbow Domination Number (vol 42, pg 841, 2018)
    Ahangar, H. Abdollahzadeh
    Khaibari, M.
    Rad, N. Jafari
    Sheikholeslami, S. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 1005 - 1005
  • [50] CRITICALITY INDICES OF 2-RAINBOW DOMINATION OF PATHS AND CYCLES
    Bouchou, Ahmed
    Blidia, Mostafa
    OPUSCULA MATHEMATICA, 2016, 36 (05) : 563 - 574