2-Rainbow domination stability of graphs

被引:0
|
作者
Zepeng Li
Zehui Shao
Shou-jun Xu
机构
[1] Lanzhou University,School of Information Science and Engineering
[2] Guangzhou University,Institute of Computing Science and Technology
[3] Lanzhou University,School of Mathematics and Statistics
来源
Journal of Combinatorial Optimization | 2019年 / 38卷
关键词
2-Rainbow domination; 2-Rainbow domination number; 2-Rainbow domination stability;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G, let f:V(G)→P({1,2}).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(G)\rightarrow \mathcal {P}(\{1,2\}).$$\end{document} If for each vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document} such that f(v)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=\emptyset $$\end{document} we have ⋃u∈N(v)f(u)={1,2},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigcup \nolimits _{u\in N(v)}f(u)=\{1,2\},$$\end{document} then f is called a 2-rainbow dominating function (2RDF) of G. The weight w(f) of a function f is defined as w(f)=∑v∈V(G)f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(f)=\sum _{v\in V(G)}\left| f(v)\right| $$\end{document}. The minimum weight of a 2RDF of G is called the 2-rainbow domination number of G, denoted by γr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{r2}(G)$$\end{document}. The 2-rainbow domination stability, stγr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)$$\end{document}, of G is the minimum number of vertices in G whose removal changes the 2-rainbow domination number. In this paper, we first determine the exact values on 2-rainbow domination stability of some special classes of graphs, such as paths, cycles, complete graphs and complete bipartite graphs. Then we obtain several bounds on stγr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)$$\end{document}. In particular, we obtain stγr2(G)≤δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)\le \delta (G)+1$$\end{document} and stγr2(G)≤|V(G)|-Δ(G)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)\le |V(G)|-\varDelta (G)-1$$\end{document} if γr2(G)≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{r2}(G)\ge 3$$\end{document}. Moreover, we prove that there exists no graph G with stγr2(G)=|V(G)|-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)=|V(G)|-2$$\end{document} when n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document} and characterize the graphs G with stγr2(G)=|V(G)|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)=|V(G)|-1$$\end{document} or stγr2(G)=|V(G)|-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)=|V(G)|-3$$\end{document}.
引用
收藏
页码:836 / 845
页数:9
相关论文
共 50 条
  • [21] On the 2-rainbow independent domination numbers of some graphs
    Gabrovsek, Bostjan
    Peperko, Aljosa
    Zerovnik, Janez
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2023, 31 (03) : 817 - 831
  • [22] Averaging 2-rainbow domination and Roman domination
    Alvarado, Jose D.
    Dantas, Simone
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2016, 205 : 202 - 207
  • [23] The 2-Rainbow Domination of SierpiA"ski Graphs and Extended SierpiA"ski Graphs
    Liu, Jia-Jie
    Chang, Shun-Chieh
    Lin, Chiou-Jiun
    THEORY OF COMPUTING SYSTEMS, 2017, 61 (03) : 893 - 906
  • [24] A Note on Outer-Independent 2-Rainbow Domination in Graphs
    Cabrera-Martinez, Abel
    MATHEMATICS, 2022, 10 (13)
  • [25] 2-rainbow domination and its practical variation on weighted graphs
    Yen, Chung-Kung
    Smart Innovation, Systems and Technologies, 2013, 20 : 59 - 68
  • [26] Italian, 2-rainbow and Roman domination numbers in middle graphs
    Kim, Kijung
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (02) : 2045 - 2053
  • [27] 2-rainbow domination of generalized Petersen graphs P(n, 2)
    Tong Chunling
    Lin Xiaohui
    Yang Yuansheng
    Luo Meiqin
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) : 1932 - 1937
  • [28] On 2-Rainbow Domination of Generalized Petersen Graphs P(ck,k)
    Brezovnik, Simon
    Rupnik Poklukar, Darja
    Zerovnik, Janez
    MATHEMATICS, 2023, 11 (10)
  • [29] Strong Equality Between the 2-Rainbow Domination and Independent 2-Rainbow Domination Numbers in Trees
    J. Amjadi
    M. Falahat
    S. M. Sheikholeslami
    N. Jafari Rad
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 205 - 218
  • [30] Strong Equality Between the 2-Rainbow Domination and Independent 2-Rainbow Domination Numbers in Trees
    Amjadi, J.
    Falahat, M.
    Sheikholeslami, S. M.
    Rad, N. Jafari
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S205 - S218