2-Rainbow domination stability of graphs

被引:0
|
作者
Zepeng Li
Zehui Shao
Shou-jun Xu
机构
[1] Lanzhou University,School of Information Science and Engineering
[2] Guangzhou University,Institute of Computing Science and Technology
[3] Lanzhou University,School of Mathematics and Statistics
来源
关键词
2-Rainbow domination; 2-Rainbow domination number; 2-Rainbow domination stability;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G, let f:V(G)→P({1,2}).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(G)\rightarrow \mathcal {P}(\{1,2\}).$$\end{document} If for each vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document} such that f(v)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)=\emptyset $$\end{document} we have ⋃u∈N(v)f(u)={1,2},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigcup \nolimits _{u\in N(v)}f(u)=\{1,2\},$$\end{document} then f is called a 2-rainbow dominating function (2RDF) of G. The weight w(f) of a function f is defined as w(f)=∑v∈V(G)f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(f)=\sum _{v\in V(G)}\left| f(v)\right| $$\end{document}. The minimum weight of a 2RDF of G is called the 2-rainbow domination number of G, denoted by γr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{r2}(G)$$\end{document}. The 2-rainbow domination stability, stγr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)$$\end{document}, of G is the minimum number of vertices in G whose removal changes the 2-rainbow domination number. In this paper, we first determine the exact values on 2-rainbow domination stability of some special classes of graphs, such as paths, cycles, complete graphs and complete bipartite graphs. Then we obtain several bounds on stγr2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)$$\end{document}. In particular, we obtain stγr2(G)≤δ(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)\le \delta (G)+1$$\end{document} and stγr2(G)≤|V(G)|-Δ(G)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)\le |V(G)|-\varDelta (G)-1$$\end{document} if γr2(G)≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{r2}(G)\ge 3$$\end{document}. Moreover, we prove that there exists no graph G with stγr2(G)=|V(G)|-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)=|V(G)|-2$$\end{document} when n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document} and characterize the graphs G with stγr2(G)=|V(G)|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)=|V(G)|-1$$\end{document} or stγr2(G)=|V(G)|-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$st_{\gamma r2}(G)=|V(G)|-3$$\end{document}.
引用
收藏
页码:836 / 845
页数:9
相关论文
共 50 条
  • [1] 2-Rainbow domination stability of graphs
    Li, Zepeng
    Shao, Zehui
    Xu, Shou-jun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) : 836 - 845
  • [2] On the 2-rainbow domination in graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2394 - 2400
  • [3] On 2-rainbow domination and Roman domination in graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 56 : 85 - 93
  • [4] On the 2-rainbow domination stable graphs
    Zepeng Li
    Zehui Shao
    Pu Wu
    Taiyin Zhao
    Journal of Combinatorial Optimization, 2019, 37 : 1327 - 1341
  • [5] On the 2-rainbow domination stable graphs
    Li, Zepeng
    Shao, Zehui
    Wu, Pu
    Zhao, Taiyin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (04) : 1327 - 1341
  • [6] Total 2-Rainbow Domination in Graphs
    Jiang, Huiqin
    Rao, Yongsheng
    MATHEMATICS, 2022, 10 (12)
  • [7] A note on stratified domination and 2-rainbow domination in graphs
    Aldemir, Mehmet Serif
    Ediz, Suleyman
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2011, 13 (7-8): : 833 - 836
  • [8] A note on total domination and 2-rainbow domination in graphs
    Furuya, Michitaka
    DISCRETE APPLIED MATHEMATICS, 2015, 184 : 229 - 230
  • [9] Note on 2-rainbow domination and Roman domination in graphs
    Wu, Yunjian
    Xing, Huaming
    APPLIED MATHEMATICS LETTERS, 2010, 23 (06) : 706 - 709
  • [10] On 2-rainbow domination of generalized Petersen graphs
    Shao, Zehui
    Jiang, Huiqin
    Wu, Pu
    Wang, Shaohui
    Zerovnik, Janez
    Zhang, Xiaosong
    Liu, Jia-Bao
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 370 - 384