On Nonconvex Pseudomonotone Equilibrium Problems with Applications

被引:8
|
作者
Lara, F. [1 ]
机构
[1] Univ Tarapaca, Fac Ciencias, Dept Matemat, Arica, Chile
关键词
Nonconvex optimization; Nonsmooth analysis; Equilibrium problems; Variational inequalities; Golden ratio algorithms; MIXED VARIATIONAL-INEQUALITIES; OPTIMALITY CONDITIONS; EXISTENCE; DERIVATIVES;
D O I
10.1007/s11228-021-00586-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a further study for nonconvex pseudomonotone equilibrium problems and nonconvex mixed variational inequalities by using global directional derivatives. We provide finer necessary and sufficient optimality conditions for both problems in the pseudomonotone case and, as a consequence, a characterization for a point to be a solution for nonconvex equilibrium problems is given. Finally, we apply the golden ratio algorithm for a class of nonconvex functions in equilibrium problems and mixed variational inequalities.
引用
收藏
页码:355 / 372
页数:18
相关论文
共 50 条