Relaxed-Inertial Proximal Point Algorithms for Nonconvex Equilibrium Problems with Applications

被引:1
|
作者
Grad, Sorin-Mihai [1 ]
Lara, Felipe [2 ]
Marcavillaca, Raul Tintaya [2 ]
机构
[1] Inst Polytech Paris, Unite Math Appl, ENSTA Paris, F-91120 Palaiseau, France
[2] Univ Tarapaca, Inst Alta Invest IAI, Arica, Chile
关键词
Proximal point algorithms; Inertial algorithms; Equilibrium problems; Nonconvex optimization; Quasiconvexity; MIXED VARIATIONAL-INEQUALITIES; MAXIMAL MONOTONE-OPERATORS; CONVEX; GRADIENT;
D O I
10.1007/s10957-023-02375-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a relaxed-inertial proximal point algorithm for solving equilibrium problems involving bifunctions which satisfy in the second variable a generalized convexity notion called strong quasiconvexity, introduced by Polyak (Sov Math Dokl 7:72-75, 1966). The method is suitable for solving mixed variational inequalities and inverse mixed variational inequalities involving strongly quasiconvex functions, as these can be written as special cases of equilibrium problems. Numerical experiments where the performance of the proposed algorithm outperforms one of the standard proximal point methods are provided, too.
引用
收藏
页码:2233 / 2262
页数:30
相关论文
共 50 条
  • [1] Relaxed-inertial proximal point type algorithms for quasiconvex minimization
    Grad, S-M
    Lara, F.
    Marcavillaca, R. T.
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (03) : 615 - 635
  • [2] Relaxed-inertial proximal point type algorithms for quasiconvex minimization
    S.-M. Grad
    F. Lara
    R. T. Marcavillaca
    Journal of Global Optimization, 2023, 85 : 615 - 635
  • [3] Proximal point type algorithms with relaxed and inertial effects beyond convexity
    Grad, S. -M.
    Lara, F.
    Marcavillaca, R. T.
    OPTIMIZATION, 2024, 73 (11) : 3393 - 3410
  • [4] A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming
    Iusem, Alfredo
    Lara, Felipe
    Marcavillaca, Raul T.
    Yen, Le Hai
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 90 (03) : 755 - 779
  • [5] Inertial algorithms for a system of equilibrium problems and fixed point problems
    Prashanta Majee
    Chandal Nahak
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 11 - 27
  • [6] Inertial algorithms for a system of equilibrium problems and fixed point problems
    Majee, Prashanta
    Nahak, Chandal
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (01) : 11 - 27
  • [7] Two inertial proximal coordinate algorithms for a family of nonsmooth and nonconvex optimization problems
    Dang, Ya Zheng
    Sun, Jie
    Teo, Kok Lay
    Automatica,
  • [8] Two inertial proximal coordinate algorithms for a family of nonsmooth and nonconvex optimization problems
    Dang, Ya Zheng
    Sun, Jie
    Teo, Kok Lay
    AUTOMATICA, 2025, 171
  • [9] PROXIMAL POINT ALGORITHMS FOR NONCONVEX-NONCONCAVE MINIMAX OPTIMIZATION PROBLEMS
    Li, Xiao-bing
    Jiang, Yuan-xin
    Yao, Bin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (08) : 2007 - 2021
  • [10] Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems
    A. Iusem
    F. Lara
    Journal of Optimization Theory and Applications, 2022, 193 : 443 - 461