Proximal point type algorithms with relaxed and inertial effects beyond convexity

被引:1
|
作者
Grad, S. -M. [1 ]
Lara, F. [2 ]
Marcavillaca, R. T. [2 ]
机构
[1] Inst Polytech Paris, Unite Math Appl, ENSTA Paris, Palaiseau, France
[2] Univ Tarapaca, Inst Alta Invest IAI, Arica, Chile
关键词
Proximal point algorithms; relaxed iterative methods; inertial iterative methods; generalized convexity; prox-convexity; MAXIMAL MONOTONE-OPERATORS; WEAK-CONVERGENCE;
D O I
10.1080/02331934.2024.2329779
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that the recent relaxed-inertial proximal point algorithm due to Attouch and Cabot remains convergent when the function to be minimized is not convex, being only endowed with certain generalized convexity properties. Numerical experiments showcase the improvements brought by the relaxation and inertia features to the standard proximal point method in this setting, too.
引用
收藏
页码:3393 / 3410
页数:18
相关论文
共 50 条
  • [1] Relaxed-inertial proximal point type algorithms for quasiconvex minimization
    Grad, S-M
    Lara, F.
    Marcavillaca, R. T.
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (03) : 615 - 635
  • [2] Relaxed-inertial proximal point type algorithms for quasiconvex minimization
    S.-M. Grad
    F. Lara
    R. T. Marcavillaca
    Journal of Global Optimization, 2023, 85 : 615 - 635
  • [3] On Proximal Algorithms with Inertial Effects Beyond Monotonicity
    Iusem, Alfredo N.
    Marcavillaca, R. T.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (15-16) : 1583 - 1601
  • [4] Relaxed-Inertial Proximal Point Algorithms for Nonconvex Equilibrium Problems with Applications
    Grad, Sorin-Mihai
    Lara, Felipe
    Marcavillaca, Raul Tintaya
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (03) : 2233 - 2262
  • [5] An extension of the proximal point algorithm beyond convexity
    Grad, Sorin-Mihai
    Lara, Felipe
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 82 (02) : 313 - 329
  • [6] An extension of the proximal point algorithm beyond convexity
    Sorin-Mihai Grad
    Felipe Lara
    Journal of Global Optimization, 2022, 82 : 313 - 329
  • [7] Super-Relaxed (η)-Proximal Point Algorithms, Relaxed (η)-Proximal Point Algorithms, Linear Convergence Analysis, and Nonlinear Variational Inclusions
    Agarwal, Ravi P.
    Verma, Ram U.
    FIXED POINT THEORY AND APPLICATIONS, 2009,
  • [8] On relaxed and contraction-proximal point algorithms in hilbert spaces
    Shuyu Wang
    Fenghui Wang
    Journal of Inequalities and Applications, 2011
  • [9] On relaxed and contraction-proximal point algorithms in hilbert spaces
    Wang, Shuyu
    Wang, Fenghui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [10] Weak and strong convergence of generalized proximal point algorithms with relaxed parameters
    Hui Ouyang
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (04) : 969 - 1002