Distributed Learning for Stochastic Generalized Nash Equilibrium Problems

被引:64
|
作者
Yu, Chung-Kai [1 ]
van der Schaar, Mihaela [1 ]
Sayed, Ali H. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Adaptive learning; generalized Nash equilibrium; penalized approximation; diffusion learning; MULTITASK DIFFUSION ADAPTATION; COURNOT EQUILIBRIA; OPTIMIZATION; GAMES; CONVERGENCE; STRATEGIES; APPROXIMATION; CONSENSUS; BEHAVIOR; LMS;
D O I
10.1109/TSP.2017.2695451
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper examines a stochastic formulation of the generalized Nash equilibrium problem where agents are subject to randomness in the environment of unknown statistical distribution. We focus on fully distributed online learning by agents and employ penalized individual cost functions to deal with coupled constraints. Three stochastic gradient strategies are developed with constant step-sizes. We allow the agents to use heterogeneous step-sizes and show that the penalty solution is able to approach the Nash equilibrium in a stable manner within O(mu(max)), for small step-size value mu(max) and sufficiently large penalty parameters. The operation of the algorithm is illustrated by considering the network Cournot competition problem.
引用
收藏
页码:3893 / 3908
页数:16
相关论文
共 50 条
  • [31] Convex generalized Nash equilibrium problems and polynomial optimization
    Nie, Jiawang
    Tang, Xindong
    MATHEMATICAL PROGRAMMING, 2023, 198 (02) : 1485 - 1518
  • [32] A BARRIER FUNCTION METHOD FOR GENERALIZED NASH EQUILIBRIUM PROBLEMS
    Hou, Jian
    Zhang, Li-Wei
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (04) : 1091 - 1108
  • [33] On solving generalized Nash equilibrium problems via optimization
    Barbara Panicucci
    Massimo Pappalardo
    Mauro Passacantando
    Optimization Letters, 2009, 3 : 419 - 435
  • [34] Solving linear generalized Nash equilibrium problems numerically
    Dreves, Axel
    Sudermann-Merx, Nathan
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (05): : 1036 - 1063
  • [35] How to Select a Solution in Generalized Nash Equilibrium Problems
    Axel Dreves
    Journal of Optimization Theory and Applications, 2018, 178 : 973 - 997
  • [36] How to Select a Solution in Generalized Nash Equilibrium Problems
    Dreves, Axel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (03) : 973 - 997
  • [37] PENALTY METHODS FOR THE SOLUTION OF GENERALIZED NASH EQUILIBRIUM PROBLEMS
    Facchinei, Francisco
    Kanzow, Christian
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2228 - 2253
  • [38] Convex generalized Nash equilibrium problems and polynomial optimization
    Jiawang Nie
    Xindong Tang
    Mathematical Programming, 2023, 198 : 1485 - 1518
  • [39] ON THE SOLUTION OF THE KKT CONDITIONS OF GENERALIZED NASH EQUILIBRIUM PROBLEMS
    Dreves, Axel
    Facchinei, Francisco
    Kanzow, Christian
    Sagratella, Simone
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) : 1082 - 1108
  • [40] EXISTENCE OF SOLUTIONS FOR A CLASS OF GENERALIZED NASH EQUILIBRIUM PROBLEMS
    Zhang, Yule
    Zhang, Jihong
    Li, Wenzhuo
    Zhang, Liwei
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,