Distributed Learning for Stochastic Generalized Nash Equilibrium Problems

被引:64
|
作者
Yu, Chung-Kai [1 ]
van der Schaar, Mihaela [1 ]
Sayed, Ali H. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Adaptive learning; generalized Nash equilibrium; penalized approximation; diffusion learning; MULTITASK DIFFUSION ADAPTATION; COURNOT EQUILIBRIA; OPTIMIZATION; GAMES; CONVERGENCE; STRATEGIES; APPROXIMATION; CONSENSUS; BEHAVIOR; LMS;
D O I
10.1109/TSP.2017.2695451
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper examines a stochastic formulation of the generalized Nash equilibrium problem where agents are subject to randomness in the environment of unknown statistical distribution. We focus on fully distributed online learning by agents and employ penalized individual cost functions to deal with coupled constraints. Three stochastic gradient strategies are developed with constant step-sizes. We allow the agents to use heterogeneous step-sizes and show that the penalty solution is able to approach the Nash equilibrium in a stable manner within O(mu(max)), for small step-size value mu(max) and sufficiently large penalty parameters. The operation of the algorithm is illustrated by considering the network Cournot competition problem.
引用
收藏
页码:3893 / 3908
页数:16
相关论文
共 50 条
  • [21] Exact Penalization of Generalized Nash Equilibrium Problems
    Ba Q.
    Pang J.-S.
    Operations Research, 2022, 70 (03) : 1448 - 1464
  • [22] Solving a Class of Generalized Nash Equilibrium Problems
    Peiyu LI
    Guihua LIN
    数学研究及应用, 2013, 33 (03) : 372 - 378
  • [23] On the Convergence to Nash Equilibrium in Problems of Distributed Computing
    T. Boulogne
    E. Altman
    O. Pourtallier
    Annals of Operations Research, 2002, 109 : 279 - 291
  • [24] On the convergence to Nash equilibrium in problems of distributed computing
    Boulogne, T
    Altman, E
    Pourtallier, O
    ANNALS OF OPERATIONS RESEARCH, 2002, 109 (1-4) : 279 - 291
  • [25] Distributed Nash Equilibrium Seeking With Stochastic Communication Noise
    Cheng, Yuwen
    Liu, Shuai
    Zhen, Ziyang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (04) : 2134 - 2138
  • [26] Distributed Stochastic Nash Equilibrium Learning in Locally Coupled Network Games with Unknown Parameters
    Huang, Yuanhanqing
    Hu, Jianghai
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [27] Stochastic Nash Equilibrium Problems: Models, Analysis, and Algorithms
    Lei, Jinlong
    Shanbhag, Uday V.
    IEEE CONTROL SYSTEMS MAGAZINE, 2022, 42 (04): : 103 - 124
  • [28] Partial penalization for the solution of generalized Nash equilibrium problems
    Facchinei, Francisco
    Lampariello, Lorenzo
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 50 (01) : 39 - 57
  • [29] Existence of Projected Solutions for Generalized Nash Equilibrium Problems
    Orestes Bueno
    John Cotrina
    Journal of Optimization Theory and Applications, 2021, 191 : 344 - 362
  • [30] Partial penalization for the solution of generalized Nash equilibrium problems
    Francisco Facchinei
    Lorenzo Lampariello
    Journal of Global Optimization, 2011, 50 : 39 - 57