Improved accuracy of Lp-approximation to derivatives by radial basis function interpolation

被引:1
|
作者
Yoon, JH
机构
[1] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
[2] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
关键词
radial basis function; interpolation; Sobolev space; multiquadric; shifted surface spline;
D O I
10.1016/j.amc.2003.12.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper considers the approximation to a function and its derivatives by radial basis function interpolation and its derivatives respectively on the Sobolev space. It is known that due to edge effects, we lose some accuracy near the boundary. Thus, the goal of this paper is to show that the convergence rate of the approximation error can be at least doubled when a certain boundary condition is met. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 50 条
  • [41] Krylov subspace methods for radial basis function interpolation
    Faul, AC
    Powell, MJD
    NUMERICAL ANALYSIS 1999, 2000, 420 : 115 - 141
  • [42] Inverse and saturation theorems for radial basis function interpolation
    Schaback, R
    Wendland, H
    MATHEMATICS OF COMPUTATION, 2002, 71 (238) : 669 - 681
  • [43] Referenceless Thermometry using Radial Basis Function Interpolation
    Agnello, Luca
    Militello, Carmelo
    Gagliardo, Cesare
    Vitabile, Salvatore
    2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [44] Better bases for radial basis function interpolation problems
    Beatson, R. K.
    Levesley, J.
    Mouat, C. T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (04) : 434 - 446
  • [45] Refined error estimates for radial basis function interpolation
    Narcowich, FJ
    Ward, JD
    Wendland, H
    CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) : 541 - 564
  • [46] Nonlinear image interpolation by radial basis function networks
    Yasukawa, M
    Ikeguchi, T
    Takagi, M
    Matozaki, T
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 1199 - 1202
  • [47] Interpolation capability of the periodic radial basis function network
    Abe, Y.
    Iiguni, Y.
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2006, 153 (06): : 785 - 794
  • [48] Mesh deformation based on radial basis function interpolation
    de Boer, A.
    van der Schoot, M. S.
    Bijl, H.
    COMPUTERS & STRUCTURES, 2007, 85 (11-14) : 784 - 795
  • [49] Multivariate interpolation using radial basis function networks
    Dang Thi Thu Hien
    Hoang Xuan Huan
    Huu Tue Huynh
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2009, 1 (03) : 291 - 309
  • [50] Radial basis function interpolation in moving mesh technique
    Lin, Yanzhong
    Chen, Bing
    Xu, Xu
    Jisuan Wuli/Chinese Journal of Computational Physics, 2012, 29 (02): : 191 - 197