Improved accuracy of Lp-approximation to derivatives by radial basis function interpolation

被引:1
|
作者
Yoon, JH
机构
[1] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
[2] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
关键词
radial basis function; interpolation; Sobolev space; multiquadric; shifted surface spline;
D O I
10.1016/j.amc.2003.12.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper considers the approximation to a function and its derivatives by radial basis function interpolation and its derivatives respectively on the Sobolev space. It is known that due to edge effects, we lose some accuracy near the boundary. Thus, the goal of this paper is to show that the convergence rate of the approximation error can be at least doubled when a certain boundary condition is met. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 50 条
  • [21] Observations and guidelines on interpolation with radial basis function network for one dimensional approximation problem
    Romyaldy
    Ang, M
    IECON 2000: 26TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4: 21ST CENTURY TECHNOLOGIES AND INDUSTRIAL OPPORTUNITIES, 2000, : 2129 - 2134
  • [22] Effects of interpolation parameters in multi-log radial basis function on DEM accuracy
    Zhang, Jinming
    You, Xiong
    Wan, Gang
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2013, 38 (05): : 608 - 612
  • [23] Bibliography on radial basis function approximation
    Golberg, M.A.
    Chen, C.S.
    Boundary elements communications, 1996, 7 (04): : 155 - 163
  • [24] An error analysis for radial basis function interpolation
    Michael J. Johnson
    Numerische Mathematik, 2004, 98 : 675 - 694
  • [25] Analysis of radial basis function interpolation approach
    Zou You-Long
    Hu Fa-Long
    Zhou Can-Can
    Li Chao-Liu
    Dunn Keh-Jim
    APPLIED GEOPHYSICS, 2013, 10 (04) : 397 - 410
  • [26] An error analysis for radial basis function interpolation
    Johnson, MJ
    NUMERISCHE MATHEMATIK, 2004, 98 (04) : 675 - 694
  • [27] Analysis of radial basis function interpolation approach
    You-Long Zou
    Fa-Long Hu
    Can-Can Zhou
    Chao-Liu Li
    Keh-Jim Dunn
    Applied Geophysics, 2013, 10 : 397 - 410
  • [28] Pointwise approximation with quasi-interpolation by radial basis functions
    Buhmann, Martin D.
    Dai, Feng
    JOURNAL OF APPROXIMATION THEORY, 2015, 192 : 156 - 192
  • [29] Approximation of a Function and Its Derivatives on the Basis of Cubic Spline Interpolation in the Presence of a Boundary Layer
    I. A. Blatov
    A. I. Zadorin
    E. V. Kitaeva
    Computational Mathematics and Mathematical Physics, 2019, 59 : 343 - 354
  • [30] Approximation of a Function and Its Derivatives on the Basis of Cubic Spline Interpolation in the Presence of a Boundary Layer
    Blatov, I. A.
    Zadorin, A. I.
    Kitaeva, E. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (03) : 343 - 354