Deeper Local Search for Better Approximation on Maximum Internal Spanning Trees

被引:0
|
作者
Li, Wenjun [1 ]
Chen, Jianer [1 ]
Wang, Jianxin [1 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
来源
ALGORITHMS - ESA 2014 | 2014年 / 8737卷
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spanning tree has been fundamental in the research of graph algorithms. In this paper, we study the optimization problem MaxIST, which maximizes the number of internal nodes in a spanning tree of a given graph, and is a generalization of the famous Hamiltonian-Path problem. We present a polynomial-time approximation algorithm based on a deep local search strategy, identify combinatorial structures that support thorough analysis on the spanning trees resulted from such deep local search strategies, and prove that our algorithm has an approximation ratio 1.5 for the MaxIST problem, improving the previous best approximation algorithm of ratio 5/3 for the problem.
引用
收藏
页码:642 / 653
页数:12
相关论文
共 50 条
  • [31] The local limit of uniform spanning trees
    Asaf Nachmias
    Yuval Peres
    Probability Theory and Related Fields, 2022, 182 : 1133 - 1161
  • [32] New local search approximation techniques for maximum generalized satisfiability problems
    Dipto. di Informatica e Sistemistica, Univ. Studi di Roma la Sapienza, via Salaria 113, Roma 00198, Italy
    Inf. Process. Lett., 3 (151-158):
  • [33] New local search approximation techniques for maximum generalized satisfiability problems
    Alimonti, P
    INFORMATION PROCESSING LETTERS, 1996, 57 (03) : 151 - 158
  • [34] Counting Spanning Trees to Guide Search in Constrained Spanning Tree Problems
    Brockbank, Simon
    Pesant, Gilles
    Rousseau, Louis-Martin
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2013, 2013, 8124 : 175 - 183
  • [35] Improving Efficacy of Internal Binary Search Trees using Local Recovery
    Ramachandran, Arunmoezhi
    Mittal, Neeraj
    ACM SIGPLAN NOTICES, 2016, 51 (08) : 387 - 388
  • [36] Approximating the Maximum Internal Spanning Tree problem
    Salamon, Gabor
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (50) : 5273 - 5284
  • [37] Sharing the cost of maximum quality optimal spanning trees
    Subiza, Begona
    Peris, Josep E.
    TOP, 2021, 29 (02) : 470 - 493
  • [38] Finding maximum-cost minimum spanning trees
    Belal, Ahmed
    Elmasry, Arnr
    3RD ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, 2005, 2005,
  • [39] Hardness and efficiency on minimizing maximum distances in spanning trees
    Couto, Fernanda
    Cunha, Luis Felipe, I
    THEORETICAL COMPUTER SCIENCE, 2020, 838 : 168 - 179
  • [40] On numbers of vertices of maximum degree in the spanning trees of a graph
    Fac. of Appl. Phys. and Mathematics, Gdańsk Technical University, Narutowicza 11/12, 80-952 Gdańsk, Poland
    不详
    Discrete Math, 1-3 (247-258):