Deeper Local Search for Better Approximation on Maximum Internal Spanning Trees

被引:0
|
作者
Li, Wenjun [1 ]
Chen, Jianer [1 ]
Wang, Jianxin [1 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
来源
ALGORITHMS - ESA 2014 | 2014年 / 8737卷
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spanning tree has been fundamental in the research of graph algorithms. In this paper, we study the optimization problem MaxIST, which maximizes the number of internal nodes in a spanning tree of a given graph, and is a generalization of the famous Hamiltonian-Path problem. We present a polynomial-time approximation algorithm based on a deep local search strategy, identify combinatorial structures that support thorough analysis on the spanning trees resulted from such deep local search strategies, and prove that our algorithm has an approximation ratio 1.5 for the MaxIST problem, improving the previous best approximation algorithm of ratio 5/3 for the problem.
引用
收藏
页码:642 / 653
页数:12
相关论文
共 50 条
  • [21] Maximum Spanning Trees in Normed Planes
    Alonso, Javier
    Martin, Pedro
    GRAPHS AND COMBINATORICS, 2021, 37 (04) : 1385 - 1403
  • [22] On bicriterion minimal spanning trees: An approximation
    Andersen, KA
    Jornsten, K
    Lind, M
    COMPUTERS & OPERATIONS RESEARCH, 1996, 23 (12) : 1171 - 1182
  • [23] Spanning Trees as Approximation of Data Structures
    Alcaide, Daniel
    Aerts, Jan
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (10) : 3994 - 4008
  • [24] The distribution of node degree in maximum spanning trees
    Willemain, TR
    Bennett, MV
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (02) : 101 - 106
  • [25] On spanning trees and walks of low maximum degree
    Sanders, DP
    Zhao, Y
    JOURNAL OF GRAPH THEORY, 2001, 36 (02) : 67 - 74
  • [26] On the characterization of graphs with maximum number of spanning trees
    Petingi, L
    Boesch, F
    Suffel, C
    DISCRETE MATHEMATICS, 1998, 179 (1-3) : 155 - 166
  • [27] THE MAXIMUM DISTANCE PROBLEM AND MINIMUM SPANNING TREES
    Alvarado, Enrique G.
    Krishnamoorthy, Bala
    Vixie, Kevin R.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (05): : 633 - 659
  • [28] COMPUTING EUCLIDEAN MAXIMUM SPANNING-TREES
    MONMA, C
    PATERSON, M
    SURI, S
    YAO, F
    ALGORITHMICA, 1990, 5 (03) : 407 - 419
  • [29] Spanning trees with low maximum/average stretch
    Peleg, D
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2003, 2653 : 6 - 6
  • [30] The local limit of uniform spanning trees
    Nachmias, Asaf
    Peres, Yuval
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 182 (3-4) : 1133 - 1161