Deeper Local Search for Better Approximation on Maximum Internal Spanning Trees

被引:0
|
作者
Li, Wenjun [1 ]
Chen, Jianer [1 ]
Wang, Jianxin [1 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
来源
ALGORITHMS - ESA 2014 | 2014年 / 8737卷
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spanning tree has been fundamental in the research of graph algorithms. In this paper, we study the optimization problem MaxIST, which maximizes the number of internal nodes in a spanning tree of a given graph, and is a generalization of the famous Hamiltonian-Path problem. We present a polynomial-time approximation algorithm based on a deep local search strategy, identify combinatorial structures that support thorough analysis on the spanning trees resulted from such deep local search strategies, and prove that our algorithm has an approximation ratio 1.5 for the MaxIST problem, improving the previous best approximation algorithm of ratio 5/3 for the problem.
引用
收藏
页码:642 / 653
页数:12
相关论文
共 50 条
  • [1] Deeper local search for parameterized and approximation algorithms for maximum internal spanning tree
    Li, Wenjun
    Cao, Yixin
    Chen, Jianer
    Wang, Jianxin
    INFORMATION AND COMPUTATION, 2017, 252 : 187 - 200
  • [2] Better Approximation Algorithms for the Maximum Internal Spanning Tree Problem
    Knauer, Martin
    Spoerhase, Joachim
    ALGORITHMS AND DATA STRUCTURES, 2009, 5664 : 459 - 470
  • [3] Better Approximation Algorithms for the Maximum Internal Spanning Tree Problem
    Martin Knauer
    Joachim Spoerhase
    Algorithmica, 2015, 71 : 797 - 811
  • [4] Better approximation algorithms for maximum weight internal spanning trees in cubic graphs and claw-free graphs
    Biniaz A.
    Journal of Graph Algorithms and Applications, 2022, 26 (02) : 209 - 224
  • [5] WOS:000350873800002 Better Approximation Algorithms for the Maximum Internal Spanning Tree Problem
    Knauer, Martin
    Spoerhase, Joachim
    ALGORITHMICA, 2015, 71 (04) : 797 - 811
  • [6] Approximation algorithms for maximum weighted internal spanning trees in regular graphs and subdivisions of graphs
    Hakim, Sheikh Azizul
    Nishat, Rahnuma Islam
    Rahman, Md Saidur
    COMPUTER JOURNAL, 2024, 67 (10): : 2898 - 2905
  • [7] An Approximation Algorithm for Maximum Internal Spanning Tree
    Chen, Zhi-Zhong
    Harada, Youta
    Guo, Fei
    Wang, Lusheng
    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2017, 2017, 10167 : 385 - 396
  • [8] An approximation algorithm for maximum internal spanning tree
    Chen, Zhi-Zhong
    Harada, Youta
    Guo, Fei
    Wang, Lusheng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (03) : 955 - 979
  • [9] An approximation algorithm for maximum internal spanning tree
    Zhi-Zhong Chen
    Youta Harada
    Fei Guo
    Lusheng Wang
    Journal of Combinatorial Optimization, 2018, 35 : 955 - 979
  • [10] Clustering Web Search Results with Maximum Spanning Trees
    Di Marco, Antonio
    Navigli, Roberto
    AI(STAR)IA 2011: ARTIFICIAL INTELLIGENCE AROUND MAN AND BEYOND, 2011, 6934 : 201 - 212