Bloch oscillations of bosonic lattice polarons

被引:28
|
作者
Grusdt, F. [1 ,2 ,3 ,4 ]
Shashi, A. [4 ,5 ]
Abanin, D. [4 ,6 ,7 ]
Demler, E. [4 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Grad Sch Mat Sci Mainz, D-67663 Kaiserslautern, Germany
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[6] Perimeter Inst Theoret Phys, Waterloo, ON N2L 6B9, Canada
[7] Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 06期
基金
美国国家科学基金会;
关键词
QUANTUM GAS; BROKEN SYMMETRIES; DYNAMICS; PHASE; INTERFERENCE; IMPURITIES; COHERENCE; MOTION; BANDS; ATOMS;
D O I
10.1103/PhysRevA.90.063610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a single-impurity atom confined to an optical lattice and immersed in a homogeneous Bose-Einstein condensate (BEC). Interaction of the impurity with the phonon modes of the BEC leads to the formation of a stable quasiparticle, the polaron. We use a variational mean-field approach to study dispersion renormalization and derive equations describing nonequilibrium dynamics of polarons by projecting equations of motion into mean-field-type wave functions. As a concrete example, we apply our method to study dynamics of impurity atoms in response to a suddenly applied force and explore the interplay of coherent Bloch oscillations and incoherent drift. We obtain a nonlinear dependence of the drift velocity on the applied force, including a sub-Ohmic dependence for small forces for dimensionality d > 1 of the BEC. For the case of heavy impurity atoms, we derive a closed analytical expression for the drift velocity. Our results show considerable differences with the commonly used phenomenological Esaki-Tsu model.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] HARMONIC-OSCILLATOR ON A LATTICE IN A CONSTANT FORCE-FIELD AND ASSOCIATED BLOCH OSCILLATIONS
    GALLINAR, JP
    CHALBAUD, E
    PHYSICAL REVIEW B, 1991, 43 (03): : 2322 - 2333
  • [42] Optical Bloch oscillations of an Airy beam in a photonic lattice with a linear transverse index gradient
    Xiao, Fajun
    Li, Baoran
    Wang, Meirong
    Zhu, Weiren
    Zhang, Peng
    Liu, Sheng
    Premaratne, Malin
    Zhao, Jianlin
    OPTICS EXPRESS, 2014, 22 (19): : 22763 - 22770
  • [43] Generalized Bloch oscillations of ultracold lattice atoms subject to higher-order gradients
    Zhu, Qian-Ru
    Chen, Shou-Long
    Li, Shao-Jun
    Fang, Xue-Ting
    Cao, Lushuai
    Hu, Zhong-Kun
    PHYSICAL REVIEW A, 2019, 100 (05)
  • [44] THEORY OF POLARONS IN MULTIVALLEY CRYSTALS .2. STRONG INTERACTION BETWEEN ELECTRONS AND POLARIZATION OSCILLATIONS OF LATTICE
    PEKAR, SI
    SHEKA, VI
    DMITRENK.GV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1972, 63 (04): : 1455 - &
  • [45] Free spin-fluctuating lattice polarons as an alternative to small polarons
    Nagaev, EL
    Farzetdinova, RM
    PHYSICS LETTERS A, 2001, 290 (3-4) : 187 - 192
  • [46] Nonlinear Bloch-Zener oscillations for Bose-Einstein condensates in a Lieb optical lattice
    He, Peng
    Li, Zhi
    NEW JOURNAL OF PHYSICS, 2020, 22 (06)
  • [47] INFLUENCE OF SMALL POLARONS ON LATTICE VIBRATIONS
    BRYKSIN, VV
    FIRSOV, YA
    SOVIET PHYSICS SOLID STATE,USSR, 1968, 10 (05): : 1083 - +
  • [48] Ferromagnetic Polarons in the Kondo Lattice Model
    Graeme Honner
    Miklós Gulácsi
    Journal of Superconductivity, 1999, 12 : 237 - 238
  • [49] Small Polarons in Dense Lattice Systems
    T. V. Ramakrishnan
    G. Venketeswara Pai
    Journal of Low Temperature Physics, 2002, 126 : 1055 - 1065
  • [50] Bloch oscillations sustained by nonlinearity
    Driben, R.
    Konotop, V. V.
    Meier, T.
    Yulin, A. V.
    SCIENTIFIC REPORTS, 2017, 7