Bloch oscillations of bosonic lattice polarons

被引:28
|
作者
Grusdt, F. [1 ,2 ,3 ,4 ]
Shashi, A. [4 ,5 ]
Abanin, D. [4 ,6 ,7 ]
Demler, E. [4 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Grad Sch Mat Sci Mainz, D-67663 Kaiserslautern, Germany
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[6] Perimeter Inst Theoret Phys, Waterloo, ON N2L 6B9, Canada
[7] Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 06期
基金
美国国家科学基金会;
关键词
QUANTUM GAS; BROKEN SYMMETRIES; DYNAMICS; PHASE; INTERFERENCE; IMPURITIES; COHERENCE; MOTION; BANDS; ATOMS;
D O I
10.1103/PhysRevA.90.063610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a single-impurity atom confined to an optical lattice and immersed in a homogeneous Bose-Einstein condensate (BEC). Interaction of the impurity with the phonon modes of the BEC leads to the formation of a stable quasiparticle, the polaron. We use a variational mean-field approach to study dispersion renormalization and derive equations describing nonequilibrium dynamics of polarons by projecting equations of motion into mean-field-type wave functions. As a concrete example, we apply our method to study dynamics of impurity atoms in response to a suddenly applied force and explore the interplay of coherent Bloch oscillations and incoherent drift. We obtain a nonlinear dependence of the drift velocity on the applied force, including a sub-Ohmic dependence for small forces for dimensionality d > 1 of the BEC. For the case of heavy impurity atoms, we derive a closed analytical expression for the drift velocity. Our results show considerable differences with the commonly used phenomenological Esaki-Tsu model.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Effect of the lattice alignment on Bloch oscillations of a Bose-Einstein condensate in a square optical lattice
    Chung, M. -C.
    Kolovsky, A. R.
    EUROPEAN PHYSICAL JOURNAL D, 2008, 47 (03): : 421 - 425
  • [22] Bloch oscillations
    Kurz, H
    Roskos, HG
    Dekorsy, T
    Kohler, K
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1717): : 2295 - 2310
  • [23] Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale
    Ferrari, G.
    Poli, N.
    Sorrentino, F.
    Tino, G. M.
    PHYSICAL REVIEW LETTERS, 2006, 97 (06)
  • [24] OSCILLATIONS OF A BLOCH LINE WITH A BLOCH POINT
    KUFAEV, YA
    SONIN, EB
    FIZIKA TVERDOGO TELA, 1988, 30 (11): : 3272 - 3275
  • [25] Bloch oscillations in a Parity-Time synthetic dissipative silicon photonic lattice
    Liu, Xiao-Ping
    Xu, Ye-Long
    Fegadolli, William S.
    Gan, Lin
    Lu, Ming-Hui
    Scherer, Axel
    Li, Zhi-Yuan
    Chen, Yan-Feng
    2015 PHOTONICS CONFERENCE (IPC), 2015,
  • [26] Gauge structures in atom-laser interaction: Bloch oscillations in a dark lattice
    Dum, R
    Olshanii, M
    PHYSICAL REVIEW LETTERS, 1996, 76 (11) : 1788 - 1791
  • [27] Multipeaked Polarons in a Nonlinear Lattice
    Astakhova, T. Yu.
    Kashin, V. A.
    Likhachev, V. N.
    Vinogradov, G. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 10 (06) : 865 - 875
  • [28] Magnetic polarons in the Kondo lattice
    Eder, R.
    Wrobel, P.
    PHYSICAL REVIEW B, 2024, 110 (03)
  • [29] A menagerie of Bloch oscillations
    de Sterke, CM
    Dignam, MM
    Wan, J
    2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 2005, : 821 - 822
  • [30] Topological Bloch oscillations
    Holler, J.
    Alexandradinata, A.
    PHYSICAL REVIEW B, 2018, 98 (02)