Bloch oscillations of bosonic lattice polarons

被引:28
|
作者
Grusdt, F. [1 ,2 ,3 ,4 ]
Shashi, A. [4 ,5 ]
Abanin, D. [4 ,6 ,7 ]
Demler, E. [4 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[3] Grad Sch Mat Sci Mainz, D-67663 Kaiserslautern, Germany
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[6] Perimeter Inst Theoret Phys, Waterloo, ON N2L 6B9, Canada
[7] Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 06期
基金
美国国家科学基金会;
关键词
QUANTUM GAS; BROKEN SYMMETRIES; DYNAMICS; PHASE; INTERFERENCE; IMPURITIES; COHERENCE; MOTION; BANDS; ATOMS;
D O I
10.1103/PhysRevA.90.063610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a single-impurity atom confined to an optical lattice and immersed in a homogeneous Bose-Einstein condensate (BEC). Interaction of the impurity with the phonon modes of the BEC leads to the formation of a stable quasiparticle, the polaron. We use a variational mean-field approach to study dispersion renormalization and derive equations describing nonequilibrium dynamics of polarons by projecting equations of motion into mean-field-type wave functions. As a concrete example, we apply our method to study dynamics of impurity atoms in response to a suddenly applied force and explore the interplay of coherent Bloch oscillations and incoherent drift. We obtain a nonlinear dependence of the drift velocity on the applied force, including a sub-Ohmic dependence for small forces for dimensionality d > 1 of the BEC. For the case of heavy impurity atoms, we derive a closed analytical expression for the drift velocity. Our results show considerable differences with the commonly used phenomenological Esaki-Tsu model.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Bloch oscillations in the absence of a lattice
    Meinert, Florian
    Knap, Michael
    Kirilov, Emil
    Jag-Lauber, Katharina
    Zvonarev, Mikhail B.
    Demler, Eugene
    Nagerl, Hanns-Christoph
    SCIENCE, 2017, 356 (6341) : 945 - +
  • [2] Bloch oscillations as generators of polarons in a 1D crystal
    Nazareno, H. N.
    de Brito, P. E.
    PHYSICA B-CONDENSED MATTER, 2016, 494 : 1 - 6
  • [3] Anharmonic Bloch oscillations in a helicoidal lattice
    Tang, Bing
    Chang, Xia
    Deng, Ke
    PHYSICS LETTERS A, 2017, 381 (43) : 3701 - 3705
  • [4] Chiral Bloch oscillations of a biased bosonic ladder in an artificial gauge field
    Qiao, X.
    Zhang, X. B.
    Zhang, A. X.
    Yu, Z. F.
    Xue, J. K.
    31ST INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC XXXI), 2020, 1412
  • [5] Bloch oscillations in lattice potentials with controlled aperiodicity
    Walter, Stefan
    Schneble, Dominik
    Durst, Adam C.
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [6] Dynamics of Bloch oscillations in disordered lattice potentials
    Schulte, T.
    Drenkelforth, S.
    Buening, G. Kleine
    Ertmer, W.
    Arlt, J.
    Lewenstein, M.
    Santos, L.
    PHYSICAL REVIEW A, 2008, 77 (02):
  • [7] Bloch oscillations and Zener breakdown in an optical lattice
    Holthaus, M
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2000, 2 (05) : 589 - 604
  • [8] Dipole and Bloch oscillations of cold atoms in a parabolic lattice
    Ponomarev, A. V.
    Kolovsky, A. R.
    LASER PHYSICS, 2006, 16 (02) : 367 - 370
  • [9] Bloch oscillations in a one-dimensional organic lattice
    Li, Yuan
    Liu, Xiao-jing
    Fu, Ji-yong
    Liu, De-sheng
    Xie, Shi-jie
    Mei, Liang-mo
    PHYSICAL REVIEW B, 2006, 74 (18)
  • [10] Multiflavor bosonic Hubbard models in the first excited Bloch band of an optical lattice
    Isacsson, A
    Girvin, SM
    PHYSICAL REVIEW A, 2005, 72 (05):