TL-NID: Deep Neural Network with Transfer Learning for Network Intrusion Detection

被引:23
|
作者
Masum, Mohammad [1 ]
Shahriar, Hossain [2 ]
机构
[1] Kennesaw State Univ, Analyt & Data Sci Inst, Kennesaw, GA 30144 USA
[2] Kennesaw State Univ, Dept Informat Technol, Marietta, GA USA
关键词
Transfer learning; Pre-trained model; VGG-16; Deep neural network; Network intrusion detection;
D O I
10.23919/ICITST51030.2020.9351317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network intrusion detection systems (NIDSs) play an essential role in the defense of computer networks by identifying a computer networks' unauthorized access and investigating potential security breaches. Traditional NIDSs encounters difficulties to combat newly created sophisticated and unpredictable security attacks. Hence, there is an increasing need for automatic intrusion detection solution that can detect malicious activities more accurately and prevent high false alarm rates (FPR). In this paper, we propose a novel network intrusion detection framework using a deep neural network based on the pretrained VGG-16 architecture. The framework, TL-NID (Transfer Learning for Network Intrusion Detection), is a two-step process where features are extracted in the first step, using VGG-16 pre-trained on ImageNet dataset and in the 2nd step a deep neural network is applied to the extracted features for classification. We applied TL-NID on NSL-KDD, a benchmark dataset for network intrusion, to evaluate the performance of the proposed framework. The experimental results show that our proposed method can effectively learn from the NSL-KDD dataset with producing a realistic performance in terms of accuracy, precision, recall, and false alarm. This study also aims to motivate security researchers to exploit different state-of-the-art pre-trained models for network intrusion detection problems through valuable knowledge transfer.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 50 条
  • [41] An efficient network intrusion detection approach based on deep learning
    Wang, Zhihao
    Jiang, Dingde
    Huo, Liuwei
    Yang, Wei
    WIRELESS NETWORKS, 2021,
  • [42] A Deep Learning Model for Network Intrusion Detection with Imbalanced Data
    Fu, Yanfang
    Du, Yishuai
    Cao, Zijian
    Li, Qiang
    Xiang, Wei
    ELECTRONICS, 2022, 11 (06)
  • [43] Deep Learning Model Transposition for Network Intrusion Detection Systems
    Figueiredo, Joao
    Serrao, Carlos
    de Almeida, Ana Maria
    ELECTRONICS, 2023, 12 (02)
  • [44] Network Anomaly Intrusion Detection Based on Deep Learning Approach
    Wang, Yung-Chung
    Houng, Yi-Chun
    Chen, Han-Xuan
    Tseng, Shu-Ming
    SENSORS, 2023, 23 (04)
  • [45] An Effective Deep Learning Based Scheme for Network Intrusion Detection
    Zhang, Hongpo
    Wu, Chase Q.
    Gao, Shan
    Wang, Zongmin
    Xu, Yuxiao
    Liu, Yongpeng
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 682 - 687
  • [46] Network intrusion detection using feature fusion with deep learning
    Ayantayo, Abiodun
    Kaur, Amrit
    Kour, Anit
    Schmoor, Xavier
    Shah, Fayyaz
    Vickers, Ian
    Kearney, Paul
    Abdelsamea, Mohammed M.
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [47] A Case Study on Using Deep Learning for Network Intrusion Detection
    Fernandez, Gabriel C.
    Xu, Shouhuai
    MILCOM 2019 - 2019 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2019,
  • [48] Network intrusion detection: systematic evaluation using deep learning
    Kakade, Kiran Shrimant
    Nagalakshmi, T. J.
    Pradeep, S.
    Bapu, B. R. Tapas
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2024, 16 (02) : 190 - 201
  • [49] Adaptive deep learning for network intrusion detection by risk analysis
    Zhang, Lijun
    Lu, Xingyu
    Chen, Zhaoqiang
    Liu, Tianwei
    Chen, Qun
    Li, Zhanhuai
    NEUROCOMPUTING, 2022, 493 : 46 - 58
  • [50] Attention-based Deep Learning for Network Intrusion Detection
    Guo, Naiwang
    Tian, Yingjie
    Li, Fan
    Yang, Hongshan
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584