TL-NID: Deep Neural Network with Transfer Learning for Network Intrusion Detection

被引:23
|
作者
Masum, Mohammad [1 ]
Shahriar, Hossain [2 ]
机构
[1] Kennesaw State Univ, Analyt & Data Sci Inst, Kennesaw, GA 30144 USA
[2] Kennesaw State Univ, Dept Informat Technol, Marietta, GA USA
关键词
Transfer learning; Pre-trained model; VGG-16; Deep neural network; Network intrusion detection;
D O I
10.23919/ICITST51030.2020.9351317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network intrusion detection systems (NIDSs) play an essential role in the defense of computer networks by identifying a computer networks' unauthorized access and investigating potential security breaches. Traditional NIDSs encounters difficulties to combat newly created sophisticated and unpredictable security attacks. Hence, there is an increasing need for automatic intrusion detection solution that can detect malicious activities more accurately and prevent high false alarm rates (FPR). In this paper, we propose a novel network intrusion detection framework using a deep neural network based on the pretrained VGG-16 architecture. The framework, TL-NID (Transfer Learning for Network Intrusion Detection), is a two-step process where features are extracted in the first step, using VGG-16 pre-trained on ImageNet dataset and in the 2nd step a deep neural network is applied to the extracted features for classification. We applied TL-NID on NSL-KDD, a benchmark dataset for network intrusion, to evaluate the performance of the proposed framework. The experimental results show that our proposed method can effectively learn from the NSL-KDD dataset with producing a realistic performance in terms of accuracy, precision, recall, and false alarm. This study also aims to motivate security researchers to exploit different state-of-the-art pre-trained models for network intrusion detection problems through valuable knowledge transfer.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 50 条
  • [11] Method of Intrusion Detection using Deep Neural Network
    Kim, Jin
    Shin, Nara
    Jo, Seung Yeon
    Kim, Sang Hyun
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2017, : 313 - 316
  • [12] Deep logarithmic neural network for Internet intrusion detection
    Zhendong Wang
    Zhenyu Xu
    Daojing He
    Sammy Chan
    Soft Computing, 2021, 25 : 10129 - 10152
  • [13] Deep logarithmic neural network for Internet intrusion detection
    Wang, Zhendong
    Xu, Zhenyu
    He, Daojing
    Chan, Sammy
    SOFT COMPUTING, 2021, 25 (15) : 10129 - 10152
  • [14] Network intrusion detection using an improved competitive learning neural network
    Lei, JZ
    Ghorbani, A
    SECOND ANNUAL CONFERENCE ON COMMUNICATION NETWORKS AND SERVICES RESEARCH, PROCEEDINGS, 2004, : 190 - 197
  • [15] Learning Vector Quantization Neural Network Method for Network Intrusion Detection
    YANG Degang1
    2. Department of Mathematics and Computer Science
    3. Department of Modern Educational Technology
    4. Department of Mathematics
    Wuhan University Journal of Natural Sciences, 2007, (01) : 147 - 150
  • [16] A distributed neural network learning algorithm for network intrusion detection system
    Liu, Yanheng
    Tian, Daxin
    Yu, Xuegang
    Wang, Jian
    NEURAL INFORMATION PROCESSING, PT 3, PROCEEDINGS, 2006, 4234 : 201 - 208
  • [17] Network intrusion detection methods based on deep learning
    Li X.
    Zhang S.
    Recent Patents on Engineering, 2021, 15 (04):
  • [18] Deep Learning Applications for Intrusion Detection in Network Traffic
    Getman, A. I.
    Rybolovlev, D. A.
    Nikolskaya, A. G.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (07) : 493 - 510
  • [19] Deep Learning for Network Intrusion Detection in Virtual Networks
    Spiekermann, Daniel
    Eggendorfer, Tobias
    Keller, Joerg
    ELECTRONICS, 2024, 13 (18)
  • [20] A Novel Approach based on Lightweight Deep Neural Network for Network Intrusion Detection
    Zhao, Ruijie
    Li, Zhaojie
    Xue, Zhi
    Ohtsuki, Tomoaki
    Gui, Guan
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,