Phase Retrieval Using Conditional Generative Adversarial Networks

被引:11
|
作者
Uelwer, Tobias [1 ]
Oberstrass, Alexander [1 ]
Harmeling, Stefan [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Dept Comp Sci, Dusseldorf, Germany
关键词
IMAGE;
D O I
10.1109/ICPR48806.2021.9412523
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the application of conditional generative adversarial networks to solve various phase retrieval problems. We show that including knowledge of the measurement process at training time leads to an optimization at test time that is more robust to initialization than existing approaches involving generative models. In addition, conditioning the generator network on the measurements enables us to achieve much more detailed results. We empirically demonstrate that these advantages provide meaningful solutions to the Fourier and the compressive phase retrieval problem and that our method outperforms well-established projection-based methods as well as existing methods that are based on neural networks. Like other deep learning methods, our approach is robust to noise and can therefore be useful for real-world applications.
引用
收藏
页码:731 / 738
页数:8
相关论文
共 50 条
  • [31] Multimodal attention for lip synthesis using conditional generative adversarial networks
    Vidal, Andrea
    Busso, Carlos
    SPEECH COMMUNICATION, 2023, 153
  • [32] Unpaired font family synthesis using conditional generative adversarial networks
    Ul Hassan, Ammar
    Ahmed, Hammad
    Choi, Jaeyoung
    KNOWLEDGE-BASED SYSTEMS, 2021, 229
  • [33] Sketch Based Image Retrieval with Conditional Generative Adversarial Network
    Liu Y.
    Dou C.
    Zhao Q.
    Li Z.
    Li H.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao, 12 (2336-2342): : 2336 - 2342
  • [34] Binary Generative Adversarial Networks for Image Retrieval
    Song, Jingkuan
    He, Tao
    Gao, Lianli
    Xu, Xing
    Hanjalic, Alan
    Shen, Heng Tao
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 394 - 401
  • [35] Sketch-based Image Retrieval using Generative Adversarial Networks
    Guo, Longteng
    Liu, Jing
    Wang, Yuhang
    Luo, Zhonghua
    Wen, Wei
    Lu, Hanqing
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1267 - 1268
  • [36] Range-Constrained Generative Adversarial Network: Design Synthesis Under Constraints Using Conditional Generative Adversarial Networks
    Nobari, Amin Heyrani
    Chen, Wei
    Ahmed, Faez
    JOURNAL OF MECHANICAL DESIGN, 2022, 144 (02)
  • [37] Content loss and conditional space relationship in conditional generative adversarial networks
    Eken, Enes
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (05) : 1741 - 1757
  • [38] Text to Image Synthesis Using Stacked Conditional Variational Autoencoders and Conditional Generative Adversarial Networks
    Tibebu, Haileleol
    Malik, Aadin
    De Silva, Varuna
    INTELLIGENT COMPUTING, VOL 1, 2022, 506 : 560 - 580
  • [39] Adversarial Sample Detection with Gaussian Mixture Conditional Generative Adversarial Networks
    Zhang, Pengfei
    Ju, Xiaoming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [40] Towards recovery of conditional vectors from conditional generative adversarial networks
    Ding, Sihao
    Wallin, Andreas
    PATTERN RECOGNITION LETTERS, 2019, 122 : 66 - 72