Phase Retrieval Using Conditional Generative Adversarial Networks

被引:11
|
作者
Uelwer, Tobias [1 ]
Oberstrass, Alexander [1 ]
Harmeling, Stefan [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Dept Comp Sci, Dusseldorf, Germany
关键词
IMAGE;
D O I
10.1109/ICPR48806.2021.9412523
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the application of conditional generative adversarial networks to solve various phase retrieval problems. We show that including knowledge of the measurement process at training time leads to an optimization at test time that is more robust to initialization than existing approaches involving generative models. In addition, conditioning the generator network on the measurements enables us to achieve much more detailed results. We empirically demonstrate that these advantages provide meaningful solutions to the Fourier and the compressive phase retrieval problem and that our method outperforms well-established projection-based methods as well as existing methods that are based on neural networks. Like other deep learning methods, our approach is robust to noise and can therefore be useful for real-world applications.
引用
收藏
页码:731 / 738
页数:8
相关论文
共 50 条
  • [21] TOPOLOGY DESIGN WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
    Sharpe, Conner
    Seepersad, Carolyn Conner
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 2A, 2020,
  • [22] Generative Attribute Controller with Conditional Filtered Generative Adversarial Networks
    Kaneko, Takuhiro
    Hiramatsu, Kaoru
    Kashino, Kunio
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 7006 - 7015
  • [23] Anomaly detection of adversarial examples using class-conditional generative adversarial networks
    Wang, Hang
    Miller, David J.
    Kesidis, George
    COMPUTERS & SECURITY, 2023, 124
  • [24] Realistic Ultrasonic Environment Simulation Using Conditional Generative Adversarial Networks
    Poepperli, Maximilian
    Gulagundil, Raghavendra
    Yogamani, Senthil
    Milz, Stefan
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 2278 - 2283
  • [25] Improved QT ınterval estimation using conditional generative adversarial networks
    Al−Zaben A.
    Al−Abed M.
    Neural Computing and Applications, 2024, 36 (18) : 10777 - 10789
  • [26] Metamodeling of a deep drawing process using conditional Generative Adversarial Networks
    Link, Patrick
    Bodenstab, Johannes
    Penter, Lars
    Ihlenfeldt, Steffen
    INTERNATIONAL DEEP-DRAWING RESEARCH GROUP CONFERENCE (IDDRG 2022), 2022, 1238
  • [27] Tile Art Image Generation using Conditional Generative Adversarial Networks
    Matsumura, Naoki
    Tokura, Hiroki
    Kuroda, Yuki
    Ito, Yasuaki
    Nakano, Koji
    2018 SIXTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS (CANDARW 2018), 2018, : 209 - 215
  • [28] Smart Meter Data Masking Using Conditional Generative Adversarial Networks
    Khwaja, A. S.
    Anpalagan, A.
    Venkatesh, B.
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 209
  • [29] Sea-Ice Classification Using Conditional Generative Adversarial Networks
    Alsharay, Nahed M.
    Dobre, Octavia A.
    Chen, Yuanzhu
    De Silva, Oscar
    IEEE SENSORS LETTERS, 2023, 7 (04)
  • [30] Multilevel Image Dehazing Algorithm Using Conditional Generative Adversarial Networks
    Gan, Kailei
    Zhao, Jieyu
    Chen, Hao
    IEEE ACCESS, 2020, 8 : 55221 - 55229