A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design: Part II. Model application

被引:9
|
作者
He, L. [1 ]
Huang, G. H. [2 ,3 ]
Lu, H. W. [2 ]
机构
[1] Ryerson Univ, Fac Engn Architecture & Sci, Dept Civil Engn, Toronto, ON M5B 2K3, Canada
[2] Univ Regina, Fac Engn, Environm Syst Engn Program, Regina, SK S4S 0A2, Canada
[3] Peking Univ, Coll Urban Environm Sci, Beijing 100871, Peoples R China
关键词
Groundwater remediation; Remediation design; Modeling uncertainty; Petroleum contaminants; GENETIC ALGORITHM; NEURAL-NETWORKS; SYSTEMS;
D O I
10.1016/j.jhazmat.2009.11.061
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new stochastic optimization model under modeling uncertainty (SOMUM) and parameter certainty is applied to a practical site located in western Canada. Various groundwater remediation strategies under different significance levels are obtained from the SOMUM model. The impact of modeling uncertainty (proxy-simulator residuals) on optimal remediation strategies is compared to that of parameter uncertainty (arising from physical properties). The results show that the increased remediation cost for mitigating modeling-uncertainty impact would be higher than those from models where the coefficient of variance of input parameters approximates to 40%. This provides new evidence that the modeling uncertainty in proxy-simulator residuals can hardly be ignored; there is thus a need of investigating and mitigating the impact of such uncertainties on groundwater remediation design. This work would be helpful for lowering the risk of system failure due to potential environmental-standard violation when determining optimal groundwater remediation strategies. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:527 / 534
页数:8
相关论文
共 50 条
  • [31] Interval-Parameter Linear Optimization Model with Stochastic Vertices for Land and Water Resources Allocation Under Dual Uncertainty
    Han, Yan
    Huang, Yuefei
    Wang, Guangqian
    ENVIRONMENTAL ENGINEERING SCIENCE, 2011, 28 (03) : 197 - 205
  • [32] An interval parameter optimization model for sustainable power systems planning under uncertainty
    Lin, Q. G.
    Wu, Q.
    Huang, G. H.
    Zhai, M. Y.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 54 : 631 - 641
  • [33] Economic-Oriented Robust Optimization Design Considering Model Parameter Uncertainty
    Han, Yunxia
    Zhang, Man
    Wu, Jiawei
    Yang, Shijuan
    Wang, Weilu
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [34] Stochastic optimization model for ship inspection planning under uncertainty in maritime transportation
    Yan, Ran
    Yang, Ying
    Du, Yuquan
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (01): : 103 - 122
  • [35] Integrated Bayesian Multi-model approach to quantify input, parameter and conceptual model structure uncertainty in groundwater modeling
    Mustafa, Syed Md Touhidul
    Nossent, Jiri
    Ghysels, Gert
    Huysmans, Marijke
    ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 126
  • [36] Aircraft Multidisciplinary Design Optimization Under Both Model and Design Variables Uncertainty
    Jaeger, L.
    Gogu, C.
    Segonds, S.
    Bes, C.
    JOURNAL OF AIRCRAFT, 2013, 50 (02): : 528 - 538
  • [37] Parameter optimization method for electronic circuit design using stochastic model function
    Lu, Jin-Qin
    Adachi, Takehiko
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 1992, 75 (04): : 13 - 25
  • [38] Sparse geologic dictionaries for subsurface flow model calibration: Part II. Robustness to uncertainty
    Khaninezhad, Mohammadreza Mohammad
    Jafarpour, Behnam
    Li, Lianlin
    ADVANCES IN WATER RESOURCES, 2012, 39 : 122 - 136
  • [39] Model-based parameter estimation in electromagnetics: Part II. Applications to EM observables
    Miller, EK
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 1998, 40 (02) : 51 - 65
  • [40] Distributed-parameter large basin runoff model. II. Application
    Great Lakes Environmental Research Laboratory, 2205 Commonwealth Blvd., Ann Arbor, MI 48105-2945, United States
    不详
    不详
    J. Hydrol. Eng., 3 (182-191):