A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design: Part II. Model application

被引:9
|
作者
He, L. [1 ]
Huang, G. H. [2 ,3 ]
Lu, H. W. [2 ]
机构
[1] Ryerson Univ, Fac Engn Architecture & Sci, Dept Civil Engn, Toronto, ON M5B 2K3, Canada
[2] Univ Regina, Fac Engn, Environm Syst Engn Program, Regina, SK S4S 0A2, Canada
[3] Peking Univ, Coll Urban Environm Sci, Beijing 100871, Peoples R China
关键词
Groundwater remediation; Remediation design; Modeling uncertainty; Petroleum contaminants; GENETIC ALGORITHM; NEURAL-NETWORKS; SYSTEMS;
D O I
10.1016/j.jhazmat.2009.11.061
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new stochastic optimization model under modeling uncertainty (SOMUM) and parameter certainty is applied to a practical site located in western Canada. Various groundwater remediation strategies under different significance levels are obtained from the SOMUM model. The impact of modeling uncertainty (proxy-simulator residuals) on optimal remediation strategies is compared to that of parameter uncertainty (arising from physical properties). The results show that the increased remediation cost for mitigating modeling-uncertainty impact would be higher than those from models where the coefficient of variance of input parameters approximates to 40%. This provides new evidence that the modeling uncertainty in proxy-simulator residuals can hardly be ignored; there is thus a need of investigating and mitigating the impact of such uncertainties on groundwater remediation design. This work would be helpful for lowering the risk of system failure due to potential environmental-standard violation when determining optimal groundwater remediation strategies. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:527 / 534
页数:8
相关论文
共 50 条
  • [21] Optimization under turbulence model uncertainty for aerospace design
    Cook, L. W.
    Mishra, A. A.
    Jarrett, J. P.
    Willcox, K. E.
    Iaccarino, G.
    PHYSICS OF FLUIDS, 2019, 31 (10)
  • [22] A three-stage stochastic optimization model for the design of smart energy districts under uncertainty
    Zatti, Matteo
    Martelli, Emanuele
    Amaldi, Edoardo
    27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT C, 2017, 40C : 2389 - 2394
  • [23] Groundwater management under uncertainty using a stochastic multi-cell model
    Joodavi, Ata
    Zare, Mohammad
    Ziaei, Ali Naghi
    Ferre, Ty P. A.
    JOURNAL OF HYDROLOGY, 2017, 551 : 265 - 277
  • [24] A stochastic model for solidification II. Application to binary metallic melts
    Shobha Dass
    Gautam Johri
    Lakshman Pandey
    Pramana, 1997, 48 : 891 - 922
  • [25] An interval-parameter stochastic robust optimization model for supporting municipal solid waste management under uncertainty
    Xu, Y.
    Huang, G. H.
    Qin, X. S.
    Cao, M. F.
    Sun, Y.
    WASTE MANAGEMENT, 2010, 30 (02) : 316 - 327
  • [26] Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting Model
    Vrugt, Jasper A.
    Gupta, Hoshin V.
    Dekker, Stefan C.
    Sorooshian, Soroosh
    Wagener, Thorsten
    Bouten, Willem
    JOURNAL OF HYDROLOGY, 2006, 325 (1-4) : 288 - 307
  • [27] Modeling of the CoolMOS™ transistor -: Part II:: DC model and parameter extraction
    Daniel, BJ
    Parikh, CD
    Patil, MB
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (05) : 923 - 929
  • [28] Kinetic model of the Peirce-Smith converter: Part II. Model application and discussion
    Kyllo, AK
    Richards, GG
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 1998, 29 (01): : 251 - 259
  • [29] A kinetic model of the Peirce-Smith converter: Part II. Model application and discussion
    A. K. Kyllo
    G. G. Richards
    Metallurgical and Materials Transactions B, 1998, 29 : 251 - 259
  • [30] Multidisciplinary robust design optimization under parameter and model uncertainties
    Li, Wei
    Gao, Liang
    Xiao, Mi
    ENGINEERING OPTIMIZATION, 2020, 52 (03) : 426 - 445