A novel battery state estimation model based on unscented Kalman filter

被引:5
|
作者
Li, Jiabo [1 ]
Ye, Min [1 ]
Gao, Kangping [1 ]
Jiao, Shengjie [1 ]
Xu, Xinxin [1 ,2 ]
机构
[1] Changan Univ, Natl Engn Lab Highway Maintenance Equipment, Xian 710064, Peoples R China
[2] Henan Gaoyuan Maintenance Technol Highway Co Ltd, Xinxiang 453003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
State of charge (SOC); Forgetting factor recursive least square method; Least square support vector machine; Error model; Adaptive unscented Kalman filter;
D O I
10.1007/s11581-021-04021-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate estimation of the state of charge (SOC) of batteries is very important for real-time monitoring and safety control of electric vehicles. Four aspects of efforts are applied to promote the accuracy of SOC estimation. Firstly, the state-space equation of the battery model based on the Thevenin model is established and the parameters of the model are identified by the forgetting factor recursive least square method. Secondly, aiming at the nonlinear relationship between the open-circuit voltage (OCV) and SOC, the least square support vector machine is proposed to establish the mapping relationship between OCV and SOC. Thirdly, the influence of fitting accuracy of the OCV-SOC curve on SOC estimation is analyzed. Based on this, an error model is proposed, and a joint estimator using an adaptive unscented Kalman filter algorithm combining the error model is proposed. Finally, compared with the estimated SOC results of the traditional SOC estimation method, the experimental results show that the proposed model has better estimation ability and robustness.
引用
收藏
页码:2673 / 2683
页数:11
相关论文
共 50 条
  • [31] Improved Unscented Kalman Filter for Bounded State Estimation
    Gao, Mingyu
    He, Zhiwei
    Liu, Yuanyuan
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 2101 - 2104
  • [32] Application of Unscented Kalman Filter to Vehicle State Estimation
    Zhu, Tianjun
    Zheng, Hongyan
    2008 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL 2, PROCEEDINGS, 2008, : 135 - +
  • [33] Vehicle State Information Estimation with the Unscented Kalman Filter
    Ren, Hongbin
    Chen, Sizhong
    Liu, Gang
    Zheng, Kaifeng
    ADVANCES IN MECHANICAL ENGINEERING, 2014,
  • [34] Constrained State Estimation Using the Unscented Kalman Filter
    Kandepu, Rambabu
    Imsland, Lars
    Foss, Bjarne A.
    2008 MEDITERRANEAN CONFERENCE ON CONTROL AUTOMATION, VOLS 1-4, 2008, : 203 - +
  • [35] State of charge estimation with the adaptive unscented Kalman filter based on an accurate equivalent circuit model
    Lin, Xinyou
    Tang, Yunliang
    Ren, Jing
    Wei, Yimin
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [36] A novel adaptive unscented Kalman filter for nonlinear estimation
    Jiang, Zhe
    Song, Qi
    He, Yuqing
    Han, Jianda
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5805 - +
  • [37] Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter
    Gholizade-Narm, Hossein
    Charkhgard, Mohammad
    IET POWER ELECTRONICS, 2013, 6 (09) : 1833 - 1841
  • [38] Online state of charge estimation of Li-ion battery based on an improved unscented Kalman filter approach
    Chen, Zewang
    Yang, Liwen
    Zhao, Xiaobing
    Wang, Youren
    He, Zhijia
    APPLIED MATHEMATICAL MODELLING, 2019, 70 : 532 - 544
  • [39] State of Charge Estimation of Lithium Battery Energy Storage Systems Based on Adaptive Correntropy Unscented Kalman Filter
    Qiu, Xinyu
    Guo, Yaosong
    Zhang, Ji
    Zhao, Haifeng
    Peng, Xu
    Wu, Zibo
    Tian, Ruiping
    Yang, Jun
    2020 5TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING (ACPEE 2020), 2020, : 851 - 857
  • [40] NOVEL MULTIPLICATIVE UNSCENTED KALMAN FILTER FOR ATTITUDE ESTIMATION
    Zanetti, Renato
    DeMars, Kyle J.
    Mortari, Daniele
    SPACEFLIGHT MECHANICS 2012, 2012, 143 : 337 - +