A novel battery state estimation model based on unscented Kalman filter

被引:5
|
作者
Li, Jiabo [1 ]
Ye, Min [1 ]
Gao, Kangping [1 ]
Jiao, Shengjie [1 ]
Xu, Xinxin [1 ,2 ]
机构
[1] Changan Univ, Natl Engn Lab Highway Maintenance Equipment, Xian 710064, Peoples R China
[2] Henan Gaoyuan Maintenance Technol Highway Co Ltd, Xinxiang 453003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
State of charge (SOC); Forgetting factor recursive least square method; Least square support vector machine; Error model; Adaptive unscented Kalman filter;
D O I
10.1007/s11581-021-04021-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate estimation of the state of charge (SOC) of batteries is very important for real-time monitoring and safety control of electric vehicles. Four aspects of efforts are applied to promote the accuracy of SOC estimation. Firstly, the state-space equation of the battery model based on the Thevenin model is established and the parameters of the model are identified by the forgetting factor recursive least square method. Secondly, aiming at the nonlinear relationship between the open-circuit voltage (OCV) and SOC, the least square support vector machine is proposed to establish the mapping relationship between OCV and SOC. Thirdly, the influence of fitting accuracy of the OCV-SOC curve on SOC estimation is analyzed. Based on this, an error model is proposed, and a joint estimator using an adaptive unscented Kalman filter algorithm combining the error model is proposed. Finally, compared with the estimated SOC results of the traditional SOC estimation method, the experimental results show that the proposed model has better estimation ability and robustness.
引用
收藏
页码:2673 / 2683
页数:11
相关论文
共 50 条
  • [21] State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter
    Xing, Jie
    Wu, Peng
    SUSTAINABILITY, 2021, 13 (09)
  • [22] Research on State of Power Estimation of Echelon-Use Battery Based on Adaptive Unscented Kalman Filter
    Hou, Enguang
    Xu, Yanliang
    Qiao, Xin
    Liu, Guangmin
    Wang, Zhixue
    SYMMETRY-BASEL, 2022, 14 (05):
  • [23] States Estimation of Vanadium Redox Flow Battery Based on Unscented Kalman Filter
    Liu X.
    Liu C.
    Yang Z.
    Zhao H.
    Zhu X.
    Gao Z.
    Han M.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2018, 38 (06): : 1769 - 1777
  • [24] SOC Estimation of Li-Ion Battery Based on Unscented Kalman Filter
    Li, Zheng
    Chen, Qiushuo
    Yue, Feihong
    Zhang, Yan
    2018 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2018, : 2177 - 2182
  • [25] Estimation of Lithium Battery SOC Based on Fuzzy Unscented Kalman Filter Algorithm
    Zhang, Xiaozhou
    Zhang, Ruiping
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 200 - 204
  • [26] A Novel Online SOC Estimation Method for the Power Lithium Battery Pack Based on the Unscented Kalman Filter
    Wang, Shun-Li
    Shang, Li-Ping
    Li, Zhan-Feng
    Xie, Wei
    Yuan, Hui-Fang
    INTERNATIONAL CONFERENCE ON ENERGY DEVELOPMENT AND ENVIRONMENTAL PROTECTION (EDEP 2017), 2017, 168 : 98 - 105
  • [27] Vehicle State Estimation Based on Adaptive Fading Unscented Kalman Filter
    Liu, Yingjie
    Cui, Dawei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [28] A method for state of charge and state of health estimation of lithium-ion battery based on adaptive unscented Kalman filter
    Liu, Shulin
    Dong, Xia
    Yu, Xiaodong
    Ren, Xiaoqing
    Zhang, Jinfeng
    Zhu, Rui
    ENERGY REPORTS, 2022, 8 : 426 - 436
  • [29] State Estimation of Nonlinear Systems Using Novel Adaptive Unscented Kalman Filter
    Jargani, Lotfollah
    Shahbazian, Mehdi
    Salahshoor, Karim
    Fathabadi, Vahid
    ICET: 2009 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2009, : 124 - 129
  • [30] Applying the unscented Kalman filter for nonlinear state estimation
    Kandepu, Rambabu
    Foss, Bjarne
    Imsland, Lars
    JOURNAL OF PROCESS CONTROL, 2008, 18 (7-8) : 753 - 768