For latent faults or situations where the pre-failure characteristics are not obvious, fault prognosis techniques are needed. This work proposes a fault prognosis method based on support vector regression (SVR), in which particle swarm optimization (PSO) algorithm is utilized to optimize the parameters to improve the prediction accuracy. The SVR algorithm and grey prediction are tested on benchmark data taken from Tennessee-Eastman process and the "NASA prognosis data repository", and the experiments compare the prediction accuracy difference between the two algorithms.
机构:
Sun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China
Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China
Zhou, Hao
Huang, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China
Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China
Huang, Sheng
Zhang, Peng
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci Wuhan, Fac Engn, Wuhan 430074, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China
Zhang, Peng
Ma, Baosong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China
Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China
Ma, Baosong
Ma, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China
Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China
Ma, Peng
Feng, Xin
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci Wuhan, Fac Engn, Wuhan 430074, Peoples R ChinaSun Yat Sen Univ, Sch Civil Engn, Guangzhou 510275, Peoples R China