Fault Prognosis Method of Industrial Process Based on PSO-SVR

被引:0
|
作者
Yao, Yu [1 ]
Cheng, Dongliang [2 ]
Peng, Gang [2 ]
Huang, Xuejuan [3 ]
机构
[1] Wuhan Univ, Wuhan 430072, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan 430079, Peoples R China
[3] Wuhan Sports Univ, Wuhan 430079, Peoples R China
关键词
Particle Swarm Optimization; PSO-SVR; Fault prognosis;
D O I
10.1007/978-3-030-29933-0_28
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For latent faults or situations where the pre-failure characteristics are not obvious, fault prognosis techniques are needed. This work proposes a fault prognosis method based on support vector regression (SVR), in which particle swarm optimization (PSO) algorithm is utilized to optimize the parameters to improve the prediction accuracy. The SVR algorithm and grey prediction are tested on benchmark data taken from Tennessee-Eastman process and the "NASA prognosis data repository", and the experiments compare the prediction accuracy difference between the two algorithms.
引用
收藏
页码:331 / 341
页数:11
相关论文
共 50 条
  • [31] 基于PSO-SVR的发酵过程状态预估模型
    熊伟丽
    徐保国
    南京理工大学学报(自然科学版), 2008, (04) : 517 - 521
  • [32] A PCA and SVR based method for continuous industrial process modelling
    Vincent, B.
    Duhamel, C.
    Ren, L.
    Tchernev, N.
    IFAC PAPERSONLINE, 2018, 51 (11): : 1604 - 1609
  • [33] MODELING AND PREDICTING THE GLASS TRANSITION TEMPERATURE OF VINYL POLYMERS BY USING HYBRID PSO-SVR METHOD
    Pei, J. F.
    Cai, C. Z.
    Zhu, Y. M.
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2013, 12 (03):
  • [34] Modeling and Predicting Tensile Strength of Tungsten Alloy by Using PSO-SVR
    Tang, J. L.
    Cai, C. Z.
    Zhu, X. J.
    Wang, G. L.
    Cao, D. F.
    FUTURE MATERIAL RESEARCH AND INDUSTRY APPLICATION, PTS 1 AND 2, 2012, 455-456 : 1497 - 1503
  • [35] 桥涵积水深度预测的PSO-SVR模型
    薛子云
    李忠
    王志
    张莉丽
    宋庆昌
    电脑与电信, 2023, (11) : 29 - 32+41
  • [36] 基于PSO-SVR模型预测粮食孔隙率
    陈家豪
    郑倩茹
    金立兵
    郑德乾
    尹君
    李嘉欣
    粮食与油脂, 2024, 37 (06) : 55 - 59
  • [37] 基于PSO-SVR的粮食产量预测模型
    罗利娟
    丁宏飞
    统计与决策, 2010, (22) : 37 - 38
  • [38] 基于改进PSO-SVR的气温预测模型研究
    刘豫
    王顺钰
    赵全顺
    青海科技, 2022, 29 (05) : 148 - 153
  • [39] Prediction method for dilution rate of laser cladding layer of 15-5PH alloy powder based on PSO-SVR
    Du Y.
    Hu Y.
    Xu L.
    Zhou Z.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (07): : 2169 - 2178
  • [40] Prediction of Carbon Emissions Level in China's Logistics Industry Based on the PSO-SVR Model
    Chen, Liang
    Pan, Yitong
    Zhang, Dongqing
    MATHEMATICS, 2024, 12 (13)