Mesenchymal Stem Cell-Derived Extracellular Vesicles Decrease Lung Injury in Mice

被引:86
|
作者
Hao, Qi [1 ]
Gudapati, Varun [1 ]
Monsel, Antoine [1 ]
Park, Jeong H. [1 ]
Hu, Shuling [1 ]
Kato, Hideya [1 ]
Lee, Jae H. [1 ]
Zhou, Li [1 ]
He, Hongli [1 ]
Lee, Jae W. [1 ]
机构
[1] Univ Calif San Francisco, Dept Anesthesiol, 505 Parnassus Ave,Box 0648, San Francisco, CA 94143 USA
来源
JOURNAL OF IMMUNOLOGY | 2019年 / 203卷 / 07期
基金
美国国家卫生研究院;
关键词
PULMONARY HOST-DEFENSE; LEUKOTRIENE B-4; BONE-MARROW; NEUTROPHIL INTERACTIONS; CATHELICIDIN LL-37; PROSTAGLANDIN E-2; CYCLOOXYGENASE; STROMAL CELLS; IN-VIVO; MICROVESICLES;
D O I
10.4049/jimmunol.1801534
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Human mesenchymal stem cell (MSC) extracellular vesicles (EV) can reduce the severity of bacterial pneumonia, but little is known about the mechanisms underlying their antimicrobial activity. In the current study, we found that bacterial clearance induced by MSC EV in Escherichia coli pneumonia in C57BL/6 mice was associated with high levels of leukotriene (LT) B-4 in the injured alveolus. More importantly, the antimicrobial effect of MSC EV was abrogated by cotreatment with a LTB4 BLT1 antagonist. To determine the role of MSC EV on LT metabolism, we measured the effect of MSC EV on a known ATP-binding cassette transporter, multidrug resistance-associated protein 1 (MRP1), and found that MSC EV suppressed MRP1 mRNA, protein, and pump function in LPS-stimulated Raw264.7 cells in vitro. The synthesis of LTB(4 )and LTC4 from LTA(4) are competitive, and MRP1 is the efflux pump for LTC4. Inhibition of MRP1 will increase LTB4 production. In addition, administration of a nonspecific MRP1 inhibitor (MK-571) reduced LTC(4 )and subsequently increased LTB4 levels in C57BL/6 mice with acute lung injury, increasing overall antimicrobial activity. We previously found that the biological effects of MSC EV were through the transfer of its content, such as mRNA, microRNA, and proteins, to target cells. In the current study, miR-145 knockdown abolished the effect of MSC EV on the inhibition of MRP1 in vitro and the antimicrobial effect in vivo. In summary, MSC EV suppressed MRP1 activity through transfer of miR-145, thereby resulting in enhanced LTB4 production and antimicrobial activity through LTB4/BLT1 signaling.
引用
收藏
页码:1961 / 1972
页数:12
相关论文
共 50 条
  • [31] Mesenchymal Stem Cell-Derived Extracellular Vesicles in Liver Immunity and Therapy
    Wu, Ruiqi
    Fan, Xiaoli
    Wang, Yi
    Shen, Mengyi
    Zheng, Yanyi
    Zhao, Shenglan
    Yang, Li
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [32] Mesenchymal Stem Cell-derived Extracellular Vesicles for Skin Wound Healing
    Kim, Soo
    Park, Joonghoon
    Kim, Tae Min
    ADVANCED IMAGING AND BIO TECHNIQUES FOR CONVERGENCE SCIENCE, 2021, 1310 : 495 - 507
  • [33] Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair
    Chen, Mengbing
    Huang, Bo
    Su, Xiaoxia
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2025, 103 (02): : 137 - 156
  • [34] Mesenchymal Stem Cell-Derived Extracellular Vesicles for Corneal Wound Repair
    Tao, Hongyan
    Chen, Xiaoniao
    Cao, Hongmei
    Zheng, Lingyue
    Li, Qian
    Zhang, Kaiyue
    Han, Zhibo
    Han, Zhong-Chao
    Guo, Zhikun
    Li, Zongjin
    Wang, Liqiang
    STEM CELLS INTERNATIONAL, 2019, 2019
  • [35] Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles
    Park, Kyong-Su
    Bandeira, Elga
    Shelke, Ganesh V.
    Lasser, Cecilia
    Lotvall, Jan
    STEM CELL RESEARCH & THERAPY, 2019, 10 (01)
  • [36] Mesenchymal Stem Cell-Derived Extracellular Vesicles as Delivery Agents for miRNAs
    Gilligan, Katie
    O'Brien, Killian
    Khan, Sonja
    O'Neill, Clodagh
    Dockery, Peter
    Dwyer, Roisin
    MOLECULAR THERAPY, 2018, 26 (05) : 424 - 424
  • [37] Requirements for human mesenchymal stem cell-derived small extracellular vesicles
    Li, Qing
    Li, Bo
    Ye, Teng
    Xu, Wenrong
    Yin, Hang
    Deng, Zhifeng
    Li, Haiyan
    Yan, Xiaomei
    Hao, Xiaoke
    Li, Li
    Tao, Zhihua
    Liu, Bicheng
    Chen, Zhengsheng
    Luo, Lei
    Qian, Hui
    Fu, Qing-Ling
    Wang, Qian
    Zheng, Lei
    Wang, Yang
    INTERDISCIPLINARY MEDICINE, 2023, 1 (01):
  • [38] Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer
    Weng, Zhijie
    Zhang, Bowen
    Wu, Chenzhou
    Yu, Fanyuan
    Han, Bo
    Li, Bo
    Li, Longjiang
    JOURNAL OF HEMATOLOGY & ONCOLOGY, 2021, 14 (01)
  • [39] Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation
    Eirin, Alfonso
    Zhu, Xiang-Yang
    Puranik, Amrutesh S.
    Tang, Hui
    McGurren, Kelly A.
    van Wijnen, Andre J.
    Lerman, Amir
    Lerman, Lilach O.
    KIDNEY INTERNATIONAL, 2017, 92 (01) : 114 - 124
  • [40] Obesity Blunts the Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles
    Huang, Weijun
    Hong, Siting
    Zhu, Xiangyang
    Alsaeedi, Mina H.
    Tang, Hui
    Krier, James D.
    Gandhi, Deep
    Jordan, Kyra L.
    Saadiq, Ishran M.
    Jiang, Yamei
    Eirin, Alfonso
    Lerman, Lilach O.
    KIDNEY INTERNATIONAL REPORTS, 2023, 8 (09): : 1841 - 1851