Mesenchymal Stem Cell-Derived Extracellular Vesicles Decrease Lung Injury in Mice

被引:86
|
作者
Hao, Qi [1 ]
Gudapati, Varun [1 ]
Monsel, Antoine [1 ]
Park, Jeong H. [1 ]
Hu, Shuling [1 ]
Kato, Hideya [1 ]
Lee, Jae H. [1 ]
Zhou, Li [1 ]
He, Hongli [1 ]
Lee, Jae W. [1 ]
机构
[1] Univ Calif San Francisco, Dept Anesthesiol, 505 Parnassus Ave,Box 0648, San Francisco, CA 94143 USA
来源
JOURNAL OF IMMUNOLOGY | 2019年 / 203卷 / 07期
基金
美国国家卫生研究院;
关键词
PULMONARY HOST-DEFENSE; LEUKOTRIENE B-4; BONE-MARROW; NEUTROPHIL INTERACTIONS; CATHELICIDIN LL-37; PROSTAGLANDIN E-2; CYCLOOXYGENASE; STROMAL CELLS; IN-VIVO; MICROVESICLES;
D O I
10.4049/jimmunol.1801534
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Human mesenchymal stem cell (MSC) extracellular vesicles (EV) can reduce the severity of bacterial pneumonia, but little is known about the mechanisms underlying their antimicrobial activity. In the current study, we found that bacterial clearance induced by MSC EV in Escherichia coli pneumonia in C57BL/6 mice was associated with high levels of leukotriene (LT) B-4 in the injured alveolus. More importantly, the antimicrobial effect of MSC EV was abrogated by cotreatment with a LTB4 BLT1 antagonist. To determine the role of MSC EV on LT metabolism, we measured the effect of MSC EV on a known ATP-binding cassette transporter, multidrug resistance-associated protein 1 (MRP1), and found that MSC EV suppressed MRP1 mRNA, protein, and pump function in LPS-stimulated Raw264.7 cells in vitro. The synthesis of LTB(4 )and LTC4 from LTA(4) are competitive, and MRP1 is the efflux pump for LTC4. Inhibition of MRP1 will increase LTB4 production. In addition, administration of a nonspecific MRP1 inhibitor (MK-571) reduced LTC(4 )and subsequently increased LTB4 levels in C57BL/6 mice with acute lung injury, increasing overall antimicrobial activity. We previously found that the biological effects of MSC EV were through the transfer of its content, such as mRNA, microRNA, and proteins, to target cells. In the current study, miR-145 knockdown abolished the effect of MSC EV on the inhibition of MRP1 in vitro and the antimicrobial effect in vivo. In summary, MSC EV suppressed MRP1 activity through transfer of miR-145, thereby resulting in enhanced LTB4 production and antimicrobial activity through LTB4/BLT1 signaling.
引用
收藏
页码:1961 / 1972
页数:12
相关论文
共 50 条
  • [11] Regenerative Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles
    Thalakiriyawa, Dineshi Sewvandi
    Jayasooriya, Primali Rukmal
    Dissanayaka, Waruna Lakmal
    CURRENT MOLECULAR MEDICINE, 2022, 22 (02) : 98 - 119
  • [12] Mesenchymal Stem Cell-derived Extracellular Vesicles for Renal Repair
    Nargesi, Arash Aghajani
    Lerman, Lilach O.
    Eirin, Alfonso
    CURRENT GENE THERAPY, 2017, 17 (01) : 29 - 42
  • [13] Functional proteins of mesenchymal stem cell-derived extracellular vesicles
    Guanguan Qiu
    Guoping Zheng
    Menghua Ge
    Jiangmei Wang
    Ruoqiong Huang
    Qiang Shu
    Jianguo Xu
    Stem Cell Research & Therapy, 10
  • [14] MESENCHYMAL STEM CELL-DERIVED EXTRACELLULAR VESICLES AND THEIR FUNCTIONAL HETEROGENEITY
    Giebel, Bernd
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 548 - 548
  • [15] Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles
    Zheng, Bingyi
    Wang, Xueting
    Guo, Meizhai
    Tzeng, Chi-Meng
    CELL TRANSPLANTATION, 2024, 33
  • [16] Intratracheal and Systemic Administration of Mesenchymal Stem Cell-Derived Extracellular Vesicles Are Equally Effective in Ameliorating Acute Lung Injury
    Wang, J.
    Huang, R.
    Zheng, G.
    Qiu, G.
    Ge, M.
    Xu, Q.
    Shu, Q.
    Xu, J.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197
  • [17] Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Therapeutic Strategy for Acute Kidney Injury
    Li, Jia-Kun
    Yang, Cheng
    Su, Ying
    Luo, Jing-Chao
    Luo, Ming-Hao
    Huang, Dan-Lei
    Tu, Guo-Wei
    Luo, Zhe
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [18] Mesenchymal stem cell-derived extracellular vesicles: emerging concepts in the treatment of spinal cord injury
    Wang, Shujun
    Du, Chengzhe
    Li, Guilan
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2023, 15 (07): : 4425 - 4438
  • [19] Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges
    Fuloria, Shivkanya
    Subramaniyan, Vetriselvan
    Dahiya, Rajiv
    Dahiya, Sunita
    Sudhakar, Kalvatala
    Kumari, Usha
    Sathasivam, Kathiresan
    Meenakshi, Dhanalekshmi Unnikrishnan
    Wu, Yuan Seng
    Sekar, Mahendran
    Malviya, Rishabha
    Singh, Amit
    Fuloria, Neeraj Kumar
    BIOLOGY-BASEL, 2021, 10 (03): : 1 - 31
  • [20] ! The Therapeutic Potential of Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles
    Boerger, V.
    Goergens, A.
    Rohde, E.
    Giebel, B.
    TRANSFUSIONSMEDIZIN, 2015, 5 (03) : 131 - 137