Mesenchymal Stem Cell-Derived Extracellular Vesicles Decrease Lung Injury in Mice

被引:86
|
作者
Hao, Qi [1 ]
Gudapati, Varun [1 ]
Monsel, Antoine [1 ]
Park, Jeong H. [1 ]
Hu, Shuling [1 ]
Kato, Hideya [1 ]
Lee, Jae H. [1 ]
Zhou, Li [1 ]
He, Hongli [1 ]
Lee, Jae W. [1 ]
机构
[1] Univ Calif San Francisco, Dept Anesthesiol, 505 Parnassus Ave,Box 0648, San Francisco, CA 94143 USA
来源
JOURNAL OF IMMUNOLOGY | 2019年 / 203卷 / 07期
基金
美国国家卫生研究院;
关键词
PULMONARY HOST-DEFENSE; LEUKOTRIENE B-4; BONE-MARROW; NEUTROPHIL INTERACTIONS; CATHELICIDIN LL-37; PROSTAGLANDIN E-2; CYCLOOXYGENASE; STROMAL CELLS; IN-VIVO; MICROVESICLES;
D O I
10.4049/jimmunol.1801534
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Human mesenchymal stem cell (MSC) extracellular vesicles (EV) can reduce the severity of bacterial pneumonia, but little is known about the mechanisms underlying their antimicrobial activity. In the current study, we found that bacterial clearance induced by MSC EV in Escherichia coli pneumonia in C57BL/6 mice was associated with high levels of leukotriene (LT) B-4 in the injured alveolus. More importantly, the antimicrobial effect of MSC EV was abrogated by cotreatment with a LTB4 BLT1 antagonist. To determine the role of MSC EV on LT metabolism, we measured the effect of MSC EV on a known ATP-binding cassette transporter, multidrug resistance-associated protein 1 (MRP1), and found that MSC EV suppressed MRP1 mRNA, protein, and pump function in LPS-stimulated Raw264.7 cells in vitro. The synthesis of LTB(4 )and LTC4 from LTA(4) are competitive, and MRP1 is the efflux pump for LTC4. Inhibition of MRP1 will increase LTB4 production. In addition, administration of a nonspecific MRP1 inhibitor (MK-571) reduced LTC(4 )and subsequently increased LTB4 levels in C57BL/6 mice with acute lung injury, increasing overall antimicrobial activity. We previously found that the biological effects of MSC EV were through the transfer of its content, such as mRNA, microRNA, and proteins, to target cells. In the current study, miR-145 knockdown abolished the effect of MSC EV on the inhibition of MRP1 in vitro and the antimicrobial effect in vivo. In summary, MSC EV suppressed MRP1 activity through transfer of miR-145, thereby resulting in enhanced LTB4 production and antimicrobial activity through LTB4/BLT1 signaling.
引用
收藏
页码:1961 / 1972
页数:12
相关论文
共 50 条
  • [1] Reduction of Acute Lung Injury by Mesenchymal Stem Cell-derived Extracellular Vesicles
    Kumar, A. J.
    Barnes, L.
    Alexander, L. E. Crotty
    Kasaraneni, N.
    Chang, H.
    Perryman, A. N.
    Matthay, M. A.
    Silva, J. A. Masso
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [2] Therapeutic use of mesenchymal stem cell-derived extracellular vesicles in acute lung injury
    Lee, Jae Hoon
    Park, Jeonghyun
    Lee, Jae-Woo
    TRANSFUSION, 2019, 59 : 876 - 883
  • [3] Mesenchymal Stem Cell-Derived Extracellular Vesicles to the Rescue of Renal Injury
    Birtwistle, Lucy
    Chen, Xin-Ming
    Pollock, Carol
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (12)
  • [4] INDUCED PLURIPOTENT STEM CELL-DERIVED MESENCHYMAL STEM CELLS-DERIVED EXTRACELLULAR VESICLES ATTENUATE LPS-INDUCED LUNG INJURY AND ENDOTOXEMIA IN MICE
    Meng, Qinghe
    Winston, Tackla
    Ma, Julia
    Song, Yuanhui
    Wang, Chunyan
    Yang, Junhui
    Ma, Zhen
    Cooney, Robert N.
    SHOCK, 2024, 62 (02): : 294 - 303
  • [5] Mesenchymal stem cell-derived extracellular vesicles for human diseases
    Zhang, Xiaofang
    Che, Xiaofang
    Zhang, Sibo
    Wang, Runze
    Li, Mo
    Jin, Yi
    Wang, Tianlu
    Song, Yingqiu
    EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS, 2024, 5 (01): : 64 - 82
  • [6] The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles
    Katsuda, Takeshi
    Kosaka, Nobuyoshi
    Takeshita, Fumitaka
    Ochiya, Takahiro
    PROTEOMICS, 2013, 13 (10-11) : 1637 - 1653
  • [7] Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Potential
    Zhao, Ashley G.
    Shah, Kiran
    Cromer, Brett
    Sumer, Huseyin
    STEM CELLS INTERNATIONAL, 2020, 2020
  • [8] Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tissue Regeneration
    Zhang, Bocheng
    Tian, Xiaoyuan
    Hao, Jun
    Xu, Gang
    Zhang, Weiguo
    CELL TRANSPLANTATION, 2020, 29
  • [9] Therapeutic potentials of mesenchymal stem cell-derived extracellular vesicles
    Giebel, B.
    ACTA PHYSIOLOGICA, 2015, 213 : 20 - 21
  • [10] Functional proteins of mesenchymal stem cell-derived extracellular vesicles
    Qiu, Guanguan
    Zheng, Guoping
    Ge, Menghua
    Wang, Jiangmei
    Huang, Ruoqiong
    Shu, Qiang
    Xu, Jianguo
    STEM CELL RESEARCH & THERAPY, 2019, 10 (01)