Research on intelligent fault diagnosis of mechanical equipment based on sparse deep neural networks

被引:21
|
作者
Qin, Fei-Wei [1 ]
Bai, Jing [2 ]
Yuan, Wen-Qiang [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[2] Beifang Univ Nationalities, Sch Comp Sci & Engn, Yinchuan, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; accuracy rate; sparse deep neural networks; fault diameters; excitation loads; CLASSIFICATION; ALGORITHM;
D O I
10.21595/jve.2017.17146
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the big data background, the accuracy of fault diagnosis and recognition has been difficult to be improved. The deep neural network was used to recognize the diagnosis rate of the bearing with four kinds of conditions and compared with traditional BP neural network, genetic neural network and particle swarm neural network. Results showed that the diagnosis accuracy and convergence rate of the deep neural network were obviously higher than those of other models. Fault diagnosis rates with different sample sizes and training sample proportions were then studied to compare with the latest reported methods. Results showed that fault diagnosis had a good stability using deep neural networks. Vibration accelerations of the bearing with different fault diameters and excitation loads were extracted. The deep neural network was used to recognize these faults. Diagnosis accuracy was very high. In particular, the fault diagnosis rate was 98 % when signal features of vibration accelerations were very obvious, which indicated that using deep neural network was effective in diagnosing and recognizing different types of faults. Finally, the deep neural network was used to conduct fault diagnosis for the gearbox of wind turbines and compared with the other models to present that it would work well in the industrial environment.
引用
收藏
页码:2439 / 2455
页数:17
相关论文
共 50 条
  • [31] Intelligent Fault Diagnosis of Rotating Machinery Based on Deep Recurrent Neural Network
    Li, Xingqiu
    Jiang, Hongkai
    Hu, Yanan
    Xiong, Xiong
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 67 - 72
  • [32] Artificial Neural Networks in Mechanical Fault Diagnosis
    Tong Shurong Chen Kai Northwestern Polytechnical University Xi’an 710072 P.R.ChinaZhou Sanchuan Eric T.T. Wong Hong Kong Polytechnic University
    International Journal of Plant Engineering and Management, 1997, (02) : 52+54+56+58+53+55+57 - 52+54+56+58+53+55+57
  • [33] Artificial neural networks in mechanical fault diagnosis
    Tong, Shurong
    Zhang, Anhua
    Zhou, Yan
    Chen, Deyuan
    Jixie Kexue Yu Jishu/Mechanical Science and Technology, 1996, 15 (06):
  • [34] Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks
    Liu, J. Z.
    Qu, Q. L.
    Yang, H. Y.
    Zhang, J. M.
    Liu, Z. D.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2024, 19 (04)
  • [35] Research and Design of the Remote Fault Diagnosis System for Complicated Equipment Based on Intelligent IETM
    Sun, Hanbing
    Xu, Zongchang
    Zhu, Jian
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 1564 - 1568
  • [36] The Study on Rotating Machinery Fault diagnosis Based on Deep Neural Networks
    Lang Bo
    Jin Ying
    Chen Yu Ping
    Fan Xiaolong
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 125 - 129
  • [37] Deep neural networks-based rolling bearing fault diagnosis
    Chen, Zhiqiang
    Deng, Shengcai
    Chen, Xudong
    Li, Chuan
    Sanchez, Rene-Vinicio
    Qin, Huafeng
    MICROELECTRONICS RELIABILITY, 2017, 75 : 327 - 333
  • [38] An Intelligent Process Fault Diagnosis System Based on Neural Networks and Andrews Plot
    Wang, Shengkai
    Zhang, Jie
    PROCESSES, 2021, 9 (09)
  • [39] Research on the Equipment Fault Diagnosis Based on GN-BP Neural Network
    Du, Jian
    Dong, Yu-cai
    Xia, Jing
    Li, Huizhen
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL CONTROL AND COMPUTATIONAL ENGINEERING (AMCCE 2017), 2017, 118 : 791 - 796
  • [40] Research on the Fault Diagnosis of Mechanical Equipment Vibration System Based on Expert System
    Wang, Yun
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 636 - 641