Research on intelligent fault diagnosis of mechanical equipment based on sparse deep neural networks

被引:21
|
作者
Qin, Fei-Wei [1 ]
Bai, Jing [2 ]
Yuan, Wen-Qiang [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[2] Beifang Univ Nationalities, Sch Comp Sci & Engn, Yinchuan, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; accuracy rate; sparse deep neural networks; fault diameters; excitation loads; CLASSIFICATION; ALGORITHM;
D O I
10.21595/jve.2017.17146
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the big data background, the accuracy of fault diagnosis and recognition has been difficult to be improved. The deep neural network was used to recognize the diagnosis rate of the bearing with four kinds of conditions and compared with traditional BP neural network, genetic neural network and particle swarm neural network. Results showed that the diagnosis accuracy and convergence rate of the deep neural network were obviously higher than those of other models. Fault diagnosis rates with different sample sizes and training sample proportions were then studied to compare with the latest reported methods. Results showed that fault diagnosis had a good stability using deep neural networks. Vibration accelerations of the bearing with different fault diameters and excitation loads were extracted. The deep neural network was used to recognize these faults. Diagnosis accuracy was very high. In particular, the fault diagnosis rate was 98 % when signal features of vibration accelerations were very obvious, which indicated that using deep neural network was effective in diagnosing and recognizing different types of faults. Finally, the deep neural network was used to conduct fault diagnosis for the gearbox of wind turbines and compared with the other models to present that it would work well in the industrial environment.
引用
收藏
页码:2439 / 2455
页数:17
相关论文
共 50 条
  • [1] Deep Transfer Learning Based on Convolutional Neural Networks for Intelligent Fault Diagnosis of Spacecraft
    Xiang, Gang
    Chen, Wenjing
    Peng, Yu
    Wang, Yuanjin
    Qu, Chen
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5522 - 5526
  • [2] Hierarchical Diagnosis Network Based on Sparse Deep Neural Networks and Its Application in Bearing Fault Diagnosis
    Qi, Yumei
    You, Wei
    Shen, Changqing
    Jiang, Xingxing
    Huang, Weiguo
    Zhu, Zhongkui
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 894 - 900
  • [3] Research on Mechanical Equipment Fault Diagnosis Method Based on Deep Learning and Information Fusion
    Jiang, Dongnian
    Wang, Zhixuan
    SENSORS, 2023, 23 (15)
  • [4] On Intelligent Fault Diagnosis for Equipment Based on Neural Network and Expert System
    Cao Bo-Wei
    Xue Qing
    Niu Jin-Tao
    Gong Chang-Hong
    Liu Lei
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 2707 - 2710
  • [5] Supervised-Learning-Based Intelligent Fault Diagnosis for Mechanical Equipment
    Hong, Geonkyo
    Suh, Dongjun
    IEEE ACCESS, 2021, 9 (09): : 116147 - 116162
  • [6] Bearing intelligent fault diagnosis based on convolutional neural networks
    An, Jing
    An, Peng
    International Journal of Circuits, Systems and Signal Processing, 2022, 16 : 470 - 477
  • [7] Fault Diagnosis Method Research of Mechanical Equipment Based on Sensor Correlation Analysis and Deep Learning
    Bai, Tangbo
    Yang, Jianwei
    Duan, Lixiang
    Wang, Yanxue
    SHOCK AND VIBRATION, 2020, 2020
  • [8] Research on deep learning in the field of mechanical equipment fault diagnosis image quality
    Chen, Xue
    Zhang, Lanyong
    Liu, Tong
    Kamruzzaman, M. M.
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 62 : 402 - 409
  • [9] Fault Diagnosis Method of Mechanical Equipment Based on Convolutional Neural Network
    Zhou, Jun
    Zhang, Wenfeng
    Sun, WeiZhao
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CONTROL AND ARTIFICIAL INTELLIGENCE (RICAI 2019), 2019, : 459 - 465
  • [10] Intelligent fault diagnosis method of mechanical equipment based on fuzzy pattern recognition
    Huo, Jiaofei
    Lin, Dong
    Qi, Wanqiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (04) : 3657 - 3664