Finite Groups with Nilpotent Subgroups of Even Order

被引:1
|
作者
Deng, Yan [1 ]
Meng, Wei [2 ]
Lu, Jiakuan [3 ]
机构
[1] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming 650500, Yunnan, Peoples R China
[2] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
[3] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximal subgroup; Second maximal subgroup; Nilpotent group; Solvable group;
D O I
10.1007/s41980-021-00570-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group G is called to be EMN-group (rep. ESMN-group) if all maximal subgroup (rep. second maximal subgroup) of G of even order are nilpotent. In this paper, we mainly investigate the structure of EMN-groups and ESMN-groups.
引用
收藏
页码:1143 / 1152
页数:10
相关论文
共 50 条
  • [1] Finite Groups with Nilpotent Subgroups of Even Order
    Yan Deng
    Wei Meng
    Jiakuan Lu
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1143 - 1152
  • [2] Finite groups with 2-nilpotent subgroups of even index
    Monakhov, VS
    MATHEMATICAL NOTES, 1997, 61 (5-6) : 585 - 589
  • [3] Finite groups with 2-nilpotent subgroups of even index
    V. S. Monakhov
    Mathematical Notes, 1997, 61 : 585 - 589
  • [4] Finite groups with supersolvable subgroups of even order
    Meng, Wei
    Lu, Jiakuan
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 1059 - 1064
  • [5] Finite groups with supersolvable subgroups of even order
    Wei Meng
    Jiakuan Lu
    Ricerche di Matematica, 2024, 73 : 1059 - 1064
  • [6] Nonabelian Sylow subgroups of finite groups of even order
    Chigira, N
    Iiyori, N
    Yamaki, H
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 4 : 88 - 90
  • [7] Finite groups with a system of nilpotent subgroups
    Li, SR
    Dark, RS
    ALGEBRA COLLOQUIUM, 2005, 12 (02) : 199 - 204
  • [8] Generation of finite groups by nilpotent subgroups
    Damian, E
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (01): : 245 - 255
  • [9] NILPOTENT SUBGROUPS OF FINITE SOLUBLE GROUPS
    HEINEKEN, H
    ARCHIV DER MATHEMATIK, 1991, 56 (05) : 417 - 423
  • [10] On finite groups factorized by σ-nilpotent subgroups
    Wu, Zhenfeng
    Zhang, Chi
    Guo, Wenbin
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) : 1785 - 1791