Finite groups with supersolvable subgroups of even order

被引:0
|
作者
Wei Meng
Jiakuan Lu
机构
[1] Guilin University of Electronic Technology,School of Mathematics and Computing Science
[2] Guangxi Normal University,School of Mathematics and Statistics
来源
Ricerche di Matematica | 2024年 / 73卷
关键词
Maximal subgroup; Supersolvable subgroup; 2; -subgroup; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document} be a class of groups. A group G is called a X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}-critical group if G∉X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \not \in \mathcal {X}$$\end{document} whereas every proper subgroup of G is in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}. We call G a pd-group if |G| is divisible by a prime p. A group G is called a X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}-semicritical group with respect to a prime p if G∉X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \not \in \mathcal {X}$$\end{document}, but every proper pd-subgroup of G is in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}. Let U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} be a class of supersolvable groups. In this paper, we mainly study the U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document}-semicritical groups with respect to 2. Furthermore, we describe the non-solvable groups whose every 2d-maximal subgroup is U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document}-semicritical groups with respect to 2.
引用
收藏
页码:1059 / 1064
页数:5
相关论文
共 50 条
  • [1] Finite groups with supersolvable subgroups of even order
    Meng, Wei
    Lu, Jiakuan
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 1059 - 1064
  • [2] ON NILPOTENT AND SUPERSOLVABLE SUBGROUPS OF FINITE GROUPS
    CHUNIKHI.SA
    DOKLADY AKADEMII NAUK SSSR, 1970, 193 (06): : 1255 - &
  • [3] Finite Groups with Nilpotent Subgroups of Even Order
    Yan Deng
    Wei Meng
    Jiakuan Lu
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1143 - 1152
  • [4] Finite Groups with Nilpotent Subgroups of Even Order
    Deng, Yan
    Meng, Wei
    Lu, Jiakuan
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 1143 - 1152
  • [5] Finite groups whose maximal subgroups of order divisible by all the primes are supersolvable
    Alexander Moretó
    Monatshefte für Mathematik, 2021, 195 : 497 - 500
  • [6] The classification of the finite groups whose supersolvable (nilpotent) subgroups of equal order are conjugate
    van der Waall, Robert W.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (02): : 380 - 383
  • [7] Finite groups whose maximal subgroups of order divisible by all the primes are supersolvable
    Moreto, Alexander
    MONATSHEFTE FUR MATHEMATIK, 2021, 195 (03): : 497 - 500
  • [8] Finite supersolvable groups and Hall normally embedded subgroups of prime power order
    Zheng, Weicheng
    Meng, Wei
    RICERCHE DI MATEMATICA, 2024, : 1199 - 1206
  • [9] Nonabelian Sylow subgroups of finite groups of even order
    Chigira, N
    Iiyori, N
    Yamaki, H
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 4 : 88 - 90
  • [10] Finite groups whose maximal subgroups of even order are MSN-groups
    Wang, Wanlin
    Guo, Pengfei
    OPEN MATHEMATICS, 2022, 20 (01): : 1800 - 1807