Finite Groups with Nilpotent Subgroups of Even Order

被引:1
|
作者
Deng, Yan [1 ]
Meng, Wei [2 ]
Lu, Jiakuan [3 ]
机构
[1] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming 650500, Yunnan, Peoples R China
[2] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
[3] Guangxi Normal Univ, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximal subgroup; Second maximal subgroup; Nilpotent group; Solvable group;
D O I
10.1007/s41980-021-00570-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group G is called to be EMN-group (rep. ESMN-group) if all maximal subgroup (rep. second maximal subgroup) of G of even order are nilpotent. In this paper, we mainly investigate the structure of EMN-groups and ESMN-groups.
引用
收藏
页码:1143 / 1152
页数:10
相关论文
共 50 条
  • [21] Non-abelian Sylow subgroups of finite groups of even order
    Chigira, N
    Iiyori, N
    Yamaki, H
    INVENTIONES MATHEMATICAE, 2000, 139 (03) : 525 - 539
  • [22] NILPOTENT SUBGROUPS OF CLASS 2 IN FINITE GROUPS
    Sabatini, Luca
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (08) : 3241 - 3244
  • [23] Large nilpotent subgroups of finite simple groups
    Vdovin E.P.
    Algebra and Logic, 2000, 39 (5) : 301 - 312
  • [24] Intersections of Three Nilpotent Subgroups of Finite Groups
    Zenkov, V., I
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (04) : 605 - 612
  • [25] NILPOTENT AND ABELIAN HALL SUBGROUPS IN FINITE GROUPS
    Beltran, Antonio
    Jose Felipe, Maria
    Malle, Gunter
    Moreto, Alexander
    Navarro, Gabriel
    Sanus, Lucia
    Solomon, Ronald
    Tiep, Pham Huu
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) : 2497 - 2513
  • [26] On intersections of abelian and nilpotent subgroups in finite groups
    Zenkov, V., I
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (03): : 128 - 131
  • [27] Large normal nilpotent subgroups of finite groups
    Vdovin, EP
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (02) : 246 - 251
  • [28] On Intersections of Certain Nilpotent Subgroups in Finite Groups
    Zenkov, V., I
    MATHEMATICAL NOTES, 2022, 112 (1-2) : 65 - 69
  • [29] Irreducible induction and nilpotent subgroups in finite groups
    Halasi, Zoltan
    Maroti, Attila
    Navarro, Gabriel
    Tiep, Pham Huu
    JOURNAL OF ALGEBRA, 2020, 561 : 200 - 214
  • [30] FINITE INSOLUBLE GROUPS WITH NILPOTENT MAXIMAL SUBGROUPS
    ROSE, JS
    JOURNAL OF ALGEBRA, 1977, 48 (01) : 182 - 196