Single Image Super-Resolution with Vision Loss Function

被引:1
|
作者
Song, Yi-Zhen [1 ]
Liu, Wen-Yen [1 ]
Chen, Ju-Chin [1 ]
Lin, Kawuu W. [1 ]
机构
[1] Natl Kaohsiung Univ Sci Technol, Kaohsiung, Taiwan
关键词
Super-resolution; Deep learning; Generative adversarial network;
D O I
10.1007/978-3-030-14802-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Super-resolution is the use of low-resolution images to reconstruct corresponding high-resolution images. This technology is used in many places such as medical fields and monitor systems. The traditional method is to interpolate to fill in the information lost when the image is enlarged. The initial use of deep learning is SRCNN, which is divided into three steps, extracting image block features, feature nonlinear mapping and reconstruction. Both PSNR and SSIM have significant progress compared with traditional methods, but there are still some details in detail restoration. defect. SRGAN will generate anti-network applications to SR problems. The method is to improve the image magnification by more than 4 times, which is easy to produce too smooth. In this study, we hope to improve the EnhanceNet by training with different loss functions and different types of images to achieve better reconstruction results.
引用
收藏
页码:173 / 179
页数:7
相关论文
共 50 条
  • [21] Learn to Zoom in Single Image Super-Resolution
    Zhang, Zili
    Favaro, Paolo
    Tian, Yan
    Li, Jianxiang
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1237 - 1241
  • [22] Single-Image Super-Resolution: A Benchmark
    Yang, Chih-Yuan
    Ma, Chao
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 372 - 386
  • [23] Single image super-resolution reconstruction method
    Tao, Hongjiu
    Rao, Junfei
    Zhou, Zude
    Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering), 2004, 28 (06):
  • [24] A Progressive Approach for Single Image Super-Resolution
    Liang, Yongbo
    Cao, Guo
    Li, Xuesong
    FOURTH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2019, 11198
  • [25] STRUCTURE PRESERVING SINGLE IMAGE SUPER-RESOLUTION
    Yang, Fan
    Xie, Don
    Jia, Huizhu
    Chen, Rui
    Xiang, Guoqing
    Gao, Wen
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1409 - 1413
  • [26] Gradient boosting for single image super-resolution
    Xiong, Dongping
    Gui, Qiuling
    Hou, Wenguang
    Ding, Mingyue
    INFORMATION SCIENCES, 2018, 454 : 328 - 343
  • [27] Subspace Constraint for Single Image Super-Resolution
    Zhang, Yanlin
    Qin, Ding
    Gu, Xiaodong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 395 - 407
  • [28] Single Image Super-Resolution Using ConvNeXt
    You, Chenghui
    Hong, Chaoqun
    Liu, Lijuan
    Lin, Xuehan
    2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2022,
  • [29] Single Image Super-Resolution with Gradient Guidance
    Man, Wang
    Du, Xiaofeng
    2021 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS (ICCCR 2021), 2021, : 304 - 309
  • [30] Patch loss: A generic multi-scale perceptual loss for single image super-resolution
    An, Tai
    Mao, Binjie
    Xue, Bin
    Huo, Chunlei
    Xiang, Shiming
    Pan, Chunhong
    PATTERN RECOGNITION, 2023, 139