Single Image Super-Resolution Using ConvNeXt

被引:3
|
作者
You, Chenghui [1 ]
Hong, Chaoqun [1 ]
Liu, Lijuan [1 ]
Lin, Xuehan [1 ]
机构
[1] Xiamen Univ Technol, Sch Comp & Informat Engn, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
single image super-resolution; convolutional neural network; deep separable convolution;
D O I
10.1109/VCIP56404.2022.10008798
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, a lot of deep convolution neural networks have been successfully applied in single image super-resolution (SISR). Even in the case of using small convolution kernel, those methods still require large number of parameters and computation. To tackle the problem above, we propose a novel framework to extract features more efficiently. Inspired by the idea of deep separable convolution, we improve the standard residual block and propose the inverted bottleneck block (IBNB). The IBNB replaces the small-sized convolution kernel with the large-sized convolution kernel without introducing additional computation. The proposed IBNB proves that large kernel size convolution is available for SISR. Comprehensive experiments demonstrate that our method surpasses most methods by up to 0.10 similar to 0.32dB in quantitative metrics with fewer parameters.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Lightweight Image Super-Resolution with ConvNeXt Residual Network
    Zhang, Yong
    Bai, Haomou
    Bing, Yaxing
    Liang, Xiao
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 9545 - 9561
  • [2] Lightweight Image Super-Resolution with ConvNeXt Residual Network
    Yong Zhang
    Haomou Bai
    Yaxing Bing
    Xiao Liang
    Neural Processing Letters, 2023, 55 : 9545 - 9561
  • [3] Single Image Super-resolution using Deformable Patches
    Zhu, Yu
    Zhang, Yanning
    Yuille, Alan L.
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2917 - 2924
  • [4] Single Image Super-Resolution Using Sparse Prior
    Bian, Junjie
    Li, Yuelong
    Feng, Jufu
    MIPPR 2011: PATTERN RECOGNITION AND COMPUTER VISION, 2011, 8004
  • [5] Transformer for Single Image Super-Resolution
    Lu, Zhisheng
    Li, Juncheng
    Liu, Hong
    Huang, Chaoyan
    Zhang, Linlin
    Zeng, Tieyong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 456 - 465
  • [6] Super-Resolution from a Single Image
    Glasner, Daniel
    Bagon, Shai
    Irani, Michal
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 349 - 356
  • [7] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,
  • [8] Single Image Super-resolution Using Spatial Transformer Networks
    Wang, Qiang
    Fan, Huijie
    Cong, Yang
    Tang, Yandong
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 564 - 567
  • [9] Single image super-resolution using a polymorphic parallel CNN
    Zeng, Kai
    Ding, Shifei
    Jia, Weikuan
    APPLIED INTELLIGENCE, 2019, 49 (01) : 292 - 300
  • [10] SINGLE IMAGE SUPER-RESOLUTION USING ADAPTIVE DOMAIN TRANSFORMATION
    Singh, Abhishek
    Ahuja, Narendra
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 947 - 951