Single Image Super-Resolution Using ConvNeXt

被引:3
|
作者
You, Chenghui [1 ]
Hong, Chaoqun [1 ]
Liu, Lijuan [1 ]
Lin, Xuehan [1 ]
机构
[1] Xiamen Univ Technol, Sch Comp & Informat Engn, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
single image super-resolution; convolutional neural network; deep separable convolution;
D O I
10.1109/VCIP56404.2022.10008798
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, a lot of deep convolution neural networks have been successfully applied in single image super-resolution (SISR). Even in the case of using small convolution kernel, those methods still require large number of parameters and computation. To tackle the problem above, we propose a novel framework to extract features more efficiently. Inspired by the idea of deep separable convolution, we improve the standard residual block and propose the inverted bottleneck block (IBNB). The IBNB replaces the small-sized convolution kernel with the large-sized convolution kernel without introducing additional computation. The proposed IBNB proves that large kernel size convolution is available for SISR. Comprehensive experiments demonstrate that our method surpasses most methods by up to 0.10 similar to 0.32dB in quantitative metrics with fewer parameters.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A Progressive Approach for Single Image Super-Resolution
    Liang, Yongbo
    Cao, Guo
    Li, Xuesong
    FOURTH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2019, 11198
  • [32] STRUCTURE PRESERVING SINGLE IMAGE SUPER-RESOLUTION
    Yang, Fan
    Xie, Don
    Jia, Huizhu
    Chen, Rui
    Xiang, Guoqing
    Gao, Wen
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1409 - 1413
  • [33] Gradient boosting for single image super-resolution
    Xiong, Dongping
    Gui, Qiuling
    Hou, Wenguang
    Ding, Mingyue
    INFORMATION SCIENCES, 2018, 454 : 328 - 343
  • [34] Subspace Constraint for Single Image Super-Resolution
    Zhang, Yanlin
    Qin, Ding
    Gu, Xiaodong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 395 - 407
  • [35] Single Image Super-Resolution with Gradient Guidance
    Man, Wang
    Du, Xiaofeng
    2021 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS (ICCCR 2021), 2021, : 304 - 309
  • [36] Single image super-resolution using global enhanced upscale network
    Xiaobiao Du
    Applied Intelligence, 2022, 52 : 2813 - 2819
  • [37] Accelerate Single Image Super-Resolution Using Object Detection Process
    Xing, Xiaolin
    Yang, Shujie
    Li, Bohan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (02): : 1585 - 1597
  • [38] Accurate single image super-resolution using cascading dense connections
    Wei, Wei
    Feng, Guoqi
    Zhang, Qi
    Cui, Dongliang
    Zhang, Miao
    Chen, Feng
    ELECTRONICS LETTERS, 2019, 55 (13) : 739 - 741
  • [39] SINGLE DEPTH IMAGE SUPER-RESOLUTION USING CONVOLUTIONAL NEURAL NETWORKS
    Chen, Baoliang
    Jung, Cheolkon
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1473 - 1477
  • [40] Single image super-resolution with reconstruction using anisotropic bilateral filter
    Du Z.
    Inoue K.
    Urahama K.
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2010, 64 (06): : 891 - 893