Influence of curing temperatures on the performances of fiber-reinforced concrete

被引:16
|
作者
Lu, Jianguo [1 ]
Liu, Junni [1 ]
Yang, Huohai [2 ,3 ]
Gao, Jiajia [3 ]
Wan, Xusheng [1 ]
Zhang, Jiacheng [1 ]
机构
[1] Southwest Petr Univ, Sch Civil Engn & Geomat, Chengdu 610500, Peoples R China
[2] Southwest Petr Univ, Petr Engn Sch, Chengdu 610500, Peoples R China
[3] Southwest Petr Univ, Deans Off, Chengdu 610500, Peoples R China
关键词
Curing temperature; Mechanical properties; Microstructure; Hydration product; Fiber-reinforced concrete; THERMAL-CHARACTERISTICS; MECHANICAL-PROPERTIES; WARM PERMAFROST; STRENGTH; BEHAVIOR; MORTAR;
D O I
10.1016/j.conbuildmat.2022.127640
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In cold regions or even permafrost areas, it shows growing interests in engineering infrastructures, and more engineering projects have been constructing, e.g. Sichuan-Tibet railway. Undoubtedly, the concrete needs to be cured at the temperature below the conventional curing temperature (about 20 degrees C). This paper investigated the effect of curing temperatures (i.e. -6 degrees C , -2 degrees C, 2 degrees C and 6 degrees C) on the performances (compressive strength, stress-strain relationship, microstructure, and hydration products) of steel fiber-reinforced concrete (SFRC), polypropylene fiber-reinforced concrete (PPFRC), and basalt fiber-reinforced concrete (BFRC). The results show that the curing temperature and curing age have positive effects on the compressive strength of concrete samples, and the compressive strength increases with the curing temperatures and curing ages. Besides, regardless of curing temperatures, the type and dosage of added fibers would greatly affect the compressive strength, and there is an optimum fiber content for the compressive strength of FRCs cured at the low temperature to resist loads, and the optimum fiber contents for the SFRC, PPFRC and BFRC are 2.0%, 2.0 parts per thousand and 0.5 parts per thousand, respectively. Additionally, the axial stress-strain curves can be divided into four-section characteristics, i.e. linear ascending stage, plastic yield stage, descending stage and residual stress stage. The addition of fibers into concrete remarkably improves the ductility of concrete due to the fiber bridging effect. Moreover, the negative curing temperatures drastically inhibit the hydration reaction of concrete. Denser microstructure, more hydration products and good fiber-matrix binding quality can be observed in the concrete samples cured at the higher temperatures.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] The influence of strain rate on performance of fiber-reinforced concrete loaded in flexure
    Bernard, ES
    CEMENT CONCRETE AND AGGREGATES, 2001, 23 (01): : 11 - 18
  • [42] Impact Behavior of Fiber-Reinforced Concrete with Polypropylene Fibers and Carbon Fiber-Reinforced Polymers
    Kheyroddin, Ali
    Arshadi, Hamed
    Salehzade, Jalil
    JOURNAL OF TESTING AND EVALUATION, 2021, 49 (06) : 4298 - 4316
  • [43] Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density
    Falliano, Devid
    De Domenico, Dario
    Ricciardi, Giuseppe
    Gugliandolo, Ernesto
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 198 : 479 - 493
  • [44] Investigation on the influence of fiber fraction and orientation on the mechanical properties of fiber-reinforced concrete slabs
    Khan, M. S.
    Ibrahim, S. M.
    Shariq, M.
    STRUCTURAL CONCRETE, 2024, 25 (02) : 886 - 903
  • [45] Interfacial Behavior of Glass Fiber-Reinforced Polymer Bars Embedded in Concrete with Internal Curing Agents
    Kim, Yail J.
    Wang, Jun
    ACI STRUCTURAL JOURNAL, 2016, 113 (03) : 595 - 604
  • [46] Finite Element Modeling of Carbon Fiber-Reinforced Polymer Reinforced Concrete Beams under Elevated Temperatures
    Rafi, Muhammad Masood
    Nadjai, Ali
    Ali, Faris
    ACI STRUCTURAL JOURNAL, 2008, 105 (06) : 701 - 710
  • [47] Electric Resistance and Curing Temperature Development of Carbon Fiber-Reinforced Conductive Concrete: A Comparative Study
    Zhang, Lei
    Chen, Siyuan
    Tian, Weichen
    Tang, Yuan
    Fu, Qiang
    Li, Ruisen
    Wang, Wei
    MATERIALS, 2024, 17 (16)
  • [48] Electrochemical and structural performances of carbon and glass fiber-reinforced structural supercapacitor composite at elevated temperatures
    Anurangi, Jayani
    Herath, Madhubhashitha
    Galhena, Dona T. L.
    Epaarachchi, Jayantha
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2024, 6 (03):
  • [49] Fiber–Matrix Interactions in Fiber-Reinforced Concrete: A Review
    Yassir M. Abbas
    M. Iqbal Khan
    Arabian Journal for Science and Engineering, 2016, 41 : 1183 - 1198
  • [50] Behavior of Fiber-Reinforced Polymer Sheet-to-Concrete Bond under Elevated Temperatures
    Qureshi, Muhammad Faizan
    Sheikh, Shamim A.
    ACI STRUCTURAL JOURNAL, 2022, 119 (04) : 311 - 323