Influence of curing temperatures on the performances of fiber-reinforced concrete

被引:16
|
作者
Lu, Jianguo [1 ]
Liu, Junni [1 ]
Yang, Huohai [2 ,3 ]
Gao, Jiajia [3 ]
Wan, Xusheng [1 ]
Zhang, Jiacheng [1 ]
机构
[1] Southwest Petr Univ, Sch Civil Engn & Geomat, Chengdu 610500, Peoples R China
[2] Southwest Petr Univ, Petr Engn Sch, Chengdu 610500, Peoples R China
[3] Southwest Petr Univ, Deans Off, Chengdu 610500, Peoples R China
关键词
Curing temperature; Mechanical properties; Microstructure; Hydration product; Fiber-reinforced concrete; THERMAL-CHARACTERISTICS; MECHANICAL-PROPERTIES; WARM PERMAFROST; STRENGTH; BEHAVIOR; MORTAR;
D O I
10.1016/j.conbuildmat.2022.127640
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In cold regions or even permafrost areas, it shows growing interests in engineering infrastructures, and more engineering projects have been constructing, e.g. Sichuan-Tibet railway. Undoubtedly, the concrete needs to be cured at the temperature below the conventional curing temperature (about 20 degrees C). This paper investigated the effect of curing temperatures (i.e. -6 degrees C , -2 degrees C, 2 degrees C and 6 degrees C) on the performances (compressive strength, stress-strain relationship, microstructure, and hydration products) of steel fiber-reinforced concrete (SFRC), polypropylene fiber-reinforced concrete (PPFRC), and basalt fiber-reinforced concrete (BFRC). The results show that the curing temperature and curing age have positive effects on the compressive strength of concrete samples, and the compressive strength increases with the curing temperatures and curing ages. Besides, regardless of curing temperatures, the type and dosage of added fibers would greatly affect the compressive strength, and there is an optimum fiber content for the compressive strength of FRCs cured at the low temperature to resist loads, and the optimum fiber contents for the SFRC, PPFRC and BFRC are 2.0%, 2.0 parts per thousand and 0.5 parts per thousand, respectively. Additionally, the axial stress-strain curves can be divided into four-section characteristics, i.e. linear ascending stage, plastic yield stage, descending stage and residual stress stage. The addition of fibers into concrete remarkably improves the ductility of concrete due to the fiber bridging effect. Moreover, the negative curing temperatures drastically inhibit the hydration reaction of concrete. Denser microstructure, more hydration products and good fiber-matrix binding quality can be observed in the concrete samples cured at the higher temperatures.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Influence of Fiber-Reinforced Polymer Sheets on the Constitutive Relationships of Reinforced Concrete Elements
    Moslehy, Yashar
    Labib, Moheb
    Ayoub, Ashraf
    Mullapudi, Ravi
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2016, 20 (02)
  • [22] Influence of Fiber Distribution and Orientation in the Fracture Behavior of Polyolefin Fiber-Reinforced Concrete
    Enfedaque, Alejandro
    Alberti, Marcos G.
    Galvez, Jaime C.
    MATERIALS, 2019, 12 (02):
  • [23] Assessment of Fiber Corrosion Influence in the Flexural Performance of Steel Fiber-Reinforced Concrete
    Fernandes, Mauro
    Neves, Rui
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [24] Effect of Curing Conditions on Bond Behavior between Carbon Fiber-Reinforced Polymer and Concrete
    Zhu, Er-yu
    Zhu, Ze-wen
    ACI MATERIALS JOURNAL, 2019, 116 (06) : 5 - 18
  • [25] Effect of Curing Conditions on the Shrinkage of Ultra High-Performance Fiber-Reinforced Concrete
    Han, Song
    Cui, Yefu
    Huang, Hanfeng
    An, Mingzhe
    Yu, Ziruo
    ADVANCES IN CIVIL ENGINEERING, 2018, 2018
  • [26] Influence of natural fiber in the mechanical and durability behaviour of hybrid fiber-reinforced concrete
    Sarangi, Sagar
    Singh, Birendra Kumar
    JOURNAL OF NATURAL FIBERS, 2022, 19 (16) : 14935 - 14950
  • [27] Influence of Fiber Content on Shear Capacity of Steel Fiber-Reinforced Concrete Beams
    Torres, Juan Andres
    Lantsoght, Eva O. L.
    FIBERS, 2019, 7 (12)
  • [28] Mechanical Behavior of Steel Fiber-Reinforced Lightweight Concrete Exposed to High Temperatures
    Wang, Huailiang
    Wei, Min
    Wu, Yuhui
    Huang, Jianling
    Chen, Huihua
    Cheng, Baoquan
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 20
  • [29] Compressive Behaviour of Steel Fiber-Reinforced Reactive Powder Concrete at Elevated Temperatures
    Yan, Kai
    Xu, Cheng
    Zhang, Xin
    SCIENCE OF ADVANCED MATERIALS, 2016, 8 (07) : 1454 - 1463
  • [30] Structural performances of concrete beams with hybrid (fiber-reinforced polymer-steel) reinforcements
    Aiello, MA
    Ombres, L
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2002, 6 (02) : 133 - 140